UNPKG

lamejs

Version:

Pure JavaScript MP3 Encoder

553 lines (503 loc) 22.9 kB
/* * ReplayGainAnalysis - analyzes input samples and give the recommended dB change * Copyright (C) 2001 David Robinson and Glen Sawyer * Improvements and optimizations added by Frank Klemm, and by Marcel Muller * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * concept and filter values by David Robinson (David@Robinson.org) * -- blame him if you think the idea is flawed * original coding by Glen Sawyer (mp3gain@hotmail.com) * -- blame him if you think this runs too slowly, or the coding is otherwise flawed * * lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ ) * -- credit him for all the _good_ programming ;) * * * For an explanation of the concepts and the basic algorithms involved, go to: * http://www.replaygain.org/ */ /* * Here's the deal. Call * * InitGainAnalysis ( long samplefreq ); * * to initialize everything. Call * * AnalyzeSamples ( var Float_t* left_samples, * var Float_t* right_samples, * size_t num_samples, * int num_channels ); * * as many times as you want, with as many or as few samples as you want. * If mono, pass the sample buffer in through left_samples, leave * right_samples NULL, and make sure num_channels = 1. * * GetTitleGain() * * will return the recommended dB level change for all samples analyzed * SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis(). * * GetAlbumGain() * * will return the recommended dB level change for all samples analyzed * since InitGainAnalysis() was called and finalized with GetTitleGain(). * * Pseudo-code to process an album: * * Float_t l_samples [4096]; * Float_t r_samples [4096]; * size_t num_samples; * unsigned int num_songs; * unsigned int i; * * InitGainAnalysis ( 44100 ); * for ( i = 1; i <= num_songs; i++ ) { * while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 ) * AnalyzeSamples ( left_samples, right_samples, num_samples, 2 ); * fprintf ("Recommended dB change for song %2d: %+6.2 dB\n", i, GetTitleGain() ); * } * fprintf ("Recommended dB change for whole album: %+6.2 dB\n", GetAlbumGain() ); */ /* * So here's the main source of potential code confusion: * * The filters applied to the incoming samples are IIR filters, * meaning they rely on up to <filter order> number of previous samples * AND up to <filter order> number of previous filtered samples. * * I set up the AnalyzeSamples routine to minimize memory usage and interface * complexity. The speed isn't compromised too much (I don't think), but the * internal complexity is higher than it should be for such a relatively * simple routine. * * Optimization/clarity suggestions are welcome. */ var common = require('./common.js'); var System = common.System; var VbrMode = common.VbrMode; var Float = common.Float; var ShortBlock = common.ShortBlock; var Util = common.Util; var Arrays = common.Arrays; var new_array_n = common.new_array_n; var new_byte = common.new_byte; var new_double = common.new_double; var new_float = common.new_float; var new_float_n = common.new_float_n; var new_int = common.new_int; var new_int_n = common.new_int_n; var assert = common.assert; /** * Table entries per dB */ GainAnalysis.STEPS_per_dB = 100.; /** * Table entries for 0...MAX_dB (normal max. values are 70...80 dB) */ GainAnalysis.MAX_dB = 120.; GainAnalysis.GAIN_NOT_ENOUGH_SAMPLES = -24601; GainAnalysis.GAIN_ANALYSIS_ERROR = 0; GainAnalysis.GAIN_ANALYSIS_OK = 1; GainAnalysis.INIT_GAIN_ANALYSIS_ERROR = 0; GainAnalysis.INIT_GAIN_ANALYSIS_OK = 1; GainAnalysis.YULE_ORDER = 10; GainAnalysis.MAX_ORDER = GainAnalysis.YULE_ORDER; GainAnalysis.MAX_SAMP_FREQ = 48000; GainAnalysis.RMS_WINDOW_TIME_NUMERATOR = 1; GainAnalysis.RMS_WINDOW_TIME_DENOMINATOR = 20; GainAnalysis.MAX_SAMPLES_PER_WINDOW = ((GainAnalysis.MAX_SAMP_FREQ * GainAnalysis.RMS_WINDOW_TIME_NUMERATOR) / GainAnalysis.RMS_WINDOW_TIME_DENOMINATOR + 1); function GainAnalysis() { /** * calibration value for 89dB */ var PINK_REF = 64.82; var YULE_ORDER = GainAnalysis.YULE_ORDER; /** * percentile which is louder than the proposed level */ var RMS_PERCENTILE = 0.95; /** * maximum allowed sample frequency [Hz] */ var MAX_SAMP_FREQ = GainAnalysis.MAX_SAMP_FREQ; var RMS_WINDOW_TIME_NUMERATOR = GainAnalysis.RMS_WINDOW_TIME_NUMERATOR; /** * numerator / denominator = time slice size [s] */ var RMS_WINDOW_TIME_DENOMINATOR = GainAnalysis.RMS_WINDOW_TIME_DENOMINATOR; /** * max. Samples per Time slice */ var MAX_SAMPLES_PER_WINDOW = GainAnalysis.MAX_SAMPLES_PER_WINDOW; var ABYule = [ [0.03857599435200, -3.84664617118067, -0.02160367184185, 7.81501653005538, -0.00123395316851, -11.34170355132042, -0.00009291677959, 13.05504219327545, -0.01655260341619, -12.28759895145294, 0.02161526843274, 9.48293806319790, -0.02074045215285, -5.87257861775999, 0.00594298065125, 2.75465861874613, 0.00306428023191, -0.86984376593551, 0.00012025322027, 0.13919314567432, 0.00288463683916], [0.05418656406430, -3.47845948550071, -0.02911007808948, 6.36317777566148, -0.00848709379851, -8.54751527471874, -0.00851165645469, 9.47693607801280, -0.00834990904936, -8.81498681370155, 0.02245293253339, 6.85401540936998, -0.02596338512915, -4.39470996079559, 0.01624864962975, 2.19611684890774, -0.00240879051584, -0.75104302451432, 0.00674613682247, 0.13149317958808, -0.00187763777362], [0.15457299681924, -2.37898834973084, -0.09331049056315, 2.84868151156327, -0.06247880153653, -2.64577170229825, 0.02163541888798, 2.23697657451713, -0.05588393329856, -1.67148153367602, 0.04781476674921, 1.00595954808547, 0.00222312597743, -0.45953458054983, 0.03174092540049, 0.16378164858596, -0.01390589421898, -0.05032077717131, 0.00651420667831, 0.02347897407020, -0.00881362733839], [0.30296907319327, -1.61273165137247, -0.22613988682123, 1.07977492259970, -0.08587323730772, -0.25656257754070, 0.03282930172664, -0.16276719120440, -0.00915702933434, -0.22638893773906, -0.02364141202522, 0.39120800788284, -0.00584456039913, -0.22138138954925, 0.06276101321749, 0.04500235387352, -0.00000828086748, 0.02005851806501, 0.00205861885564, 0.00302439095741, -0.02950134983287], [0.33642304856132, -1.49858979367799, -0.25572241425570, 0.87350271418188, -0.11828570177555, 0.12205022308084, 0.11921148675203, -0.80774944671438, -0.07834489609479, 0.47854794562326, -0.00469977914380, -0.12453458140019, -0.00589500224440, -0.04067510197014, 0.05724228140351, 0.08333755284107, 0.00832043980773, -0.04237348025746, -0.01635381384540, 0.02977207319925, -0.01760176568150], [0.44915256608450, -0.62820619233671, -0.14351757464547, 0.29661783706366, -0.22784394429749, -0.37256372942400, -0.01419140100551, 0.00213767857124, 0.04078262797139, -0.42029820170918, -0.12398163381748, 0.22199650564824, 0.04097565135648, 0.00613424350682, 0.10478503600251, 0.06747620744683, -0.01863887810927, 0.05784820375801, -0.03193428438915, 0.03222754072173, 0.00541907748707], [0.56619470757641, -1.04800335126349, -0.75464456939302, 0.29156311971249, 0.16242137742230, -0.26806001042947, 0.16744243493672, 0.00819999645858, -0.18901604199609, 0.45054734505008, 0.30931782841830, -0.33032403314006, -0.27562961986224, 0.06739368333110, 0.00647310677246, -0.04784254229033, 0.08647503780351, 0.01639907836189, -0.03788984554840, 0.01807364323573, -0.00588215443421], [0.58100494960553, -0.51035327095184, -0.53174909058578, -0.31863563325245, -0.14289799034253, -0.20256413484477, 0.17520704835522, 0.14728154134330, 0.02377945217615, 0.38952639978999, 0.15558449135573, -0.23313271880868, -0.25344790059353, -0.05246019024463, 0.01628462406333, -0.02505961724053, 0.06920467763959, 0.02442357316099, -0.03721611395801, 0.01818801111503, -0.00749618797172], [0.53648789255105, -0.25049871956020, -0.42163034350696, -0.43193942311114, -0.00275953611929, -0.03424681017675, 0.04267842219415, -0.04678328784242, -0.10214864179676, 0.26408300200955, 0.14590772289388, 0.15113130533216, -0.02459864859345, -0.17556493366449, -0.11202315195388, -0.18823009262115, -0.04060034127000, 0.05477720428674, 0.04788665548180, 0.04704409688120, -0.02217936801134]]; var ABButter = [ [0.98621192462708, -1.97223372919527, -1.97242384925416, 0.97261396931306, 0.98621192462708], [0.98500175787242, -1.96977855582618, -1.97000351574484, 0.97022847566350, 0.98500175787242], [0.97938932735214, -1.95835380975398, -1.95877865470428, 0.95920349965459, 0.97938932735214], [0.97531843204928, -1.95002759149878, -1.95063686409857, 0.95124613669835, 0.97531843204928], [0.97316523498161, -1.94561023566527, -1.94633046996323, 0.94705070426118, 0.97316523498161], [0.96454515552826, -1.92783286977036, -1.92909031105652, 0.93034775234268, 0.96454515552826], [0.96009142950541, -1.91858953033784, -1.92018285901082, 0.92177618768381, 0.96009142950541], [0.95856916599601, -1.91542108074780, -1.91713833199203, 0.91885558323625, 0.95856916599601], [0.94597685600279, -1.88903307939452, -1.89195371200558, 0.89487434461664, 0.94597685600279]]; /** * When calling this procedure, make sure that ip[-order] and op[-order] * point to real data */ //private void filterYule(final float[] input, int inputPos, float[] output, //int outputPos, int nSamples, final float[] kernel) { function filterYule(input, inputPos, output, outputPos, nSamples, kernel) { while ((nSamples--) != 0) { /* 1e-10 is a hack to avoid slowdown because of denormals */ output[outputPos] = 1e-10 + input[inputPos + 0] * kernel[0] - output[outputPos - 1] * kernel[1] + input[inputPos - 1] * kernel[2] - output[outputPos - 2] * kernel[3] + input[inputPos - 2] * kernel[4] - output[outputPos - 3] * kernel[5] + input[inputPos - 3] * kernel[6] - output[outputPos - 4] * kernel[7] + input[inputPos - 4] * kernel[8] - output[outputPos - 5] * kernel[9] + input[inputPos - 5] * kernel[10] - output[outputPos - 6] * kernel[11] + input[inputPos - 6] * kernel[12] - output[outputPos - 7] * kernel[13] + input[inputPos - 7] * kernel[14] - output[outputPos - 8] * kernel[15] + input[inputPos - 8] * kernel[16] - output[outputPos - 9] * kernel[17] + input[inputPos - 9] * kernel[18] - output[outputPos - 10] * kernel[19] + input[inputPos - 10] * kernel[20]; ++outputPos; ++inputPos; } } //private void filterButter(final float[] input, int inputPos, // float[] output, int outputPos, int nSamples, final float[] kernel) { function filterButter(input, inputPos, output, outputPos, nSamples, kernel) { while ((nSamples--) != 0) { output[outputPos] = input[inputPos + 0] * kernel[0] - output[outputPos - 1] * kernel[1] + input[inputPos - 1] * kernel[2] - output[outputPos - 2] * kernel[3] + input[inputPos - 2] * kernel[4]; ++outputPos; ++inputPos; } } /** * @return INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if * not */ function ResetSampleFrequency(rgData, samplefreq) { /* zero out initial values */ for (var i = 0; i < MAX_ORDER; i++) rgData.linprebuf[i] = rgData.lstepbuf[i] = rgData.loutbuf[i] = rgData.rinprebuf[i] = rgData.rstepbuf[i] = rgData.routbuf[i] = 0.; switch (0 | (samplefreq)) { case 48000: rgData.reqindex = 0; break; case 44100: rgData.reqindex = 1; break; case 32000: rgData.reqindex = 2; break; case 24000: rgData.reqindex = 3; break; case 22050: rgData.reqindex = 4; break; case 16000: rgData.reqindex = 5; break; case 12000: rgData.reqindex = 6; break; case 11025: rgData.reqindex = 7; break; case 8000: rgData.reqindex = 8; break; default: return INIT_GAIN_ANALYSIS_ERROR; } rgData.sampleWindow = 0 | ((samplefreq * RMS_WINDOW_TIME_NUMERATOR + RMS_WINDOW_TIME_DENOMINATOR - 1) / RMS_WINDOW_TIME_DENOMINATOR); rgData.lsum = 0.; rgData.rsum = 0.; rgData.totsamp = 0; Arrays.ill(rgData.A, 0); return INIT_GAIN_ANALYSIS_OK; } this.InitGainAnalysis = function (rgData, samplefreq) { if (ResetSampleFrequency(rgData, samplefreq) != INIT_GAIN_ANALYSIS_OK) { return INIT_GAIN_ANALYSIS_ERROR; } rgData.linpre = MAX_ORDER; rgData.rinpre = MAX_ORDER; rgData.lstep = MAX_ORDER; rgData.rstep = MAX_ORDER; rgData.lout = MAX_ORDER; rgData.rout = MAX_ORDER; Arrays.fill(rgData.B, 0); return INIT_GAIN_ANALYSIS_OK; }; /** * square */ function fsqr(d) { return d * d; } this.AnalyzeSamples = function (rgData, left_samples, left_samplesPos, right_samples, right_samplesPos, num_samples, num_channels) { var curleft; var curleftBase; var curright; var currightBase; var batchsamples; var cursamples; var cursamplepos; if (num_samples == 0) return GAIN_ANALYSIS_OK; cursamplepos = 0; batchsamples = num_samples; switch (num_channels) { case 1: right_samples = left_samples; right_samplesPos = left_samplesPos; break; case 2: break; default: return GAIN_ANALYSIS_ERROR; } if (num_samples < MAX_ORDER) { System.arraycopy(left_samples, left_samplesPos, rgData.linprebuf, MAX_ORDER, num_samples); System.arraycopy(right_samples, right_samplesPos, rgData.rinprebuf, MAX_ORDER, num_samples); } else { System.arraycopy(left_samples, left_samplesPos, rgData.linprebuf, MAX_ORDER, MAX_ORDER); System.arraycopy(right_samples, right_samplesPos, rgData.rinprebuf, MAX_ORDER, MAX_ORDER); } while (batchsamples > 0) { cursamples = batchsamples > rgData.sampleWindow - rgData.totsamp ? rgData.sampleWindow - rgData.totsamp : batchsamples; if (cursamplepos < MAX_ORDER) { curleft = rgData.linpre + cursamplepos; curleftBase = rgData.linprebuf; curright = rgData.rinpre + cursamplepos; currightBase = rgData.rinprebuf; if (cursamples > MAX_ORDER - cursamplepos) cursamples = MAX_ORDER - cursamplepos; } else { curleft = left_samplesPos + cursamplepos; curleftBase = left_samples; curright = right_samplesPos + cursamplepos; currightBase = right_samples; } filterYule(curleftBase, curleft, rgData.lstepbuf, rgData.lstep + rgData.totsamp, cursamples, ABYule[rgData.reqindex]); filterYule(currightBase, curright, rgData.rstepbuf, rgData.rstep + rgData.totsamp, cursamples, ABYule[rgData.reqindex]); filterButter(rgData.lstepbuf, rgData.lstep + rgData.totsamp, rgData.loutbuf, rgData.lout + rgData.totsamp, cursamples, ABButter[rgData.reqindex]); filterButter(rgData.rstepbuf, rgData.rstep + rgData.totsamp, rgData.routbuf, rgData.rout + rgData.totsamp, cursamples, ABButter[rgData.reqindex]); curleft = rgData.lout + rgData.totsamp; /* Get the squared values */ curleftBase = rgData.loutbuf; curright = rgData.rout + rgData.totsamp; currightBase = rgData.routbuf; var i = cursamples % 8; while ((i--) != 0) { rgData.lsum += fsqr(curleftBase[curleft++]); rgData.rsum += fsqr(currightBase[curright++]); } i = cursamples / 8; while ((i--) != 0) { rgData.lsum += fsqr(curleftBase[curleft + 0]) + fsqr(curleftBase[curleft + 1]) + fsqr(curleftBase[curleft + 2]) + fsqr(curleftBase[curleft + 3]) + fsqr(curleftBase[curleft + 4]) + fsqr(curleftBase[curleft + 5]) + fsqr(curleftBase[curleft + 6]) + fsqr(curleftBase[curleft + 7]); curleft += 8; rgData.rsum += fsqr(currightBase[curright + 0]) + fsqr(currightBase[curright + 1]) + fsqr(currightBase[curright + 2]) + fsqr(currightBase[curright + 3]) + fsqr(currightBase[curright + 4]) + fsqr(currightBase[curright + 5]) + fsqr(currightBase[curright + 6]) + fsqr(currightBase[curright + 7]); curright += 8; } batchsamples -= cursamples; cursamplepos += cursamples; rgData.totsamp += cursamples; if (rgData.totsamp == rgData.sampleWindow) { /* Get the Root Mean Square (RMS) for this set of samples */ var val = GainAnalysis.STEPS_per_dB * 10. * Math.log10((rgData.lsum + rgData.rsum) / rgData.totsamp * 0.5 + 1.e-37); var ival = (val <= 0) ? 0 : 0 | val; if (ival >= rgData.A.length) ival = rgData.A.length - 1; rgData.A[ival]++; rgData.lsum = rgData.rsum = 0.; System.arraycopy(rgData.loutbuf, rgData.totsamp, rgData.loutbuf, 0, MAX_ORDER); System.arraycopy(rgData.routbuf, rgData.totsamp, rgData.routbuf, 0, MAX_ORDER); System.arraycopy(rgData.lstepbuf, rgData.totsamp, rgData.lstepbuf, 0, MAX_ORDER); System.arraycopy(rgData.rstepbuf, rgData.totsamp, rgData.rstepbuf, 0, MAX_ORDER); rgData.totsamp = 0; } if (rgData.totsamp > rgData.sampleWindow) { /* * somehow I really screwed up: Error in programming! Contact * author about totsamp > sampleWindow */ return GAIN_ANALYSIS_ERROR; } } if (num_samples < MAX_ORDER) { System.arraycopy(rgData.linprebuf, num_samples, rgData.linprebuf, 0, MAX_ORDER - num_samples); System.arraycopy(rgData.rinprebuf, num_samples, rgData.rinprebuf, 0, MAX_ORDER - num_samples); System.arraycopy(left_samples, left_samplesPos, rgData.linprebuf, MAX_ORDER - num_samples, num_samples); System.arraycopy(right_samples, right_samplesPos, rgData.rinprebuf, MAX_ORDER - num_samples, num_samples); } else { System.arraycopy(left_samples, left_samplesPos + num_samples - MAX_ORDER, rgData.linprebuf, 0, MAX_ORDER); System.arraycopy(right_samples, right_samplesPos + num_samples - MAX_ORDER, rgData.rinprebuf, 0, MAX_ORDER); } return GAIN_ANALYSIS_OK; }; function analyzeResult(Array, len) { var i; var elems = 0; for (i = 0; i < len; i++) elems += Array[i]; if (elems == 0) return GAIN_NOT_ENOUGH_SAMPLES; var upper = 0 | Math.ceil(elems * (1. - RMS_PERCENTILE)); for (i = len; i-- > 0;) { if ((upper -= Array[i]) <= 0) break; } //return (float) ((float) PINK_REF - (float) i / (float) STEPS_per_dB); return (PINK_REF - i / GainAnalysis.STEPS_per_dB); } this.GetTitleGain = function (rgData) { var retval = analyzeResult(rgData.A, rgData.A.length); for (var i = 0; i < rgData.A.length; i++) { rgData.B[i] += rgData.A[i]; rgData.A[i] = 0; } for (var i = 0; i < MAX_ORDER; i++) rgData.linprebuf[i] = rgData.lstepbuf[i] = rgData.loutbuf[i] = rgData.rinprebuf[i] = rgData.rstepbuf[i] = rgData.routbuf[i] = 0.; rgData.totsamp = 0; rgData.lsum = rgData.rsum = 0.; return retval; } } module.exports = GainAnalysis;