lakutata
Version:
An IoC-based universal application framework.
189 lines (186 loc) • 4.26 kB
JavaScript
import { e as t, m as a, a as s, s as r, q as e, p as i, b as n, c, d as u, f as o, h as m, g as l, r as p, i as d, v as b, j as g, k as v, l as h, n as S, o as k, t as M, z as R, u as f, w as q, x as D, y as P, A as T, B as x, C as A, D as w, E as L, F as V, G as j, H as y, I as F, J as O, K as z, L as C, M as E, N, O as W, P as B, Q as G, R as H, S as I, T as J, U as K, V as Q, W as U, X, Y, Z, _ as $, $ as _, a0 as tt } from "../../../vendor/Package.16.mjs";
class Statistics {
static {
this.epsilon = t;
}
static min(t) {
return a(t);
}
static max(t) {
return s(t);
}
static sum(t) {
return r(t);
}
static quantile(t, a) {
return e(t, a);
}
static product(t) {
return i(t);
}
static mean(t) {
return n(t);
}
static average(t) {
return n(t);
}
static addToMean(t, a, s) {
return c(t, a, s);
}
static addToAverage(t, a, s) {
return c(t, a, s);
}
static mode(t) {
return u(t);
}
static median(t) {
return o(t);
}
static harmonicMean(t) {
return m(t);
}
static geometricMean(t) {
return l(t);
}
static rootMeanSquare(t) {
return p(t);
}
static sampleSkewness(t) {
return d(t);
}
static variance(t) {
return b(t);
}
static sampleVariance(t) {
return g(t);
}
static standardDeviation(t) {
return v(t);
}
static sampleStandardDeviation(t) {
return h(t);
}
static medianAbsoluteDeviation(t) {
return S(t);
}
static interquartileRange(t) {
return k(t);
}
static sumNthPowerDeviations(t, a) {
return M(t, a);
}
static zScore(t, a, s) {
return R(t, a, s);
}
static correlation(t, a) {
return f(t, a);
}
static sampleCovariance(t, a) {
return q(t, a);
}
static rSquared(t) {
return D(t, this.linearRegressionLine(this.linearRegression(t)));
}
static linearRegression(t) {
return P(t);
}
static linearRegressionLine(t) {
return T(t);
}
static shuffle(t) {
return x(t);
}
static sampleWithReplacement(t, a) {
return A(t, a);
}
static sample(t, a) {
return w(t, a, Math.random);
}
static randomPickOne(t) {
return this.sample(t, 1)[0];
}
static randomPickMany(t, a) {
return this.sample(t, a);
}
static bernoulliDistribution(t) {
return L(t);
}
static binomialDistribution(t, a) {
return V(t, a);
}
static poissonDistribution(t) {
return j(t);
}
static tTest(t, a) {
return y(t, a);
}
static tTestTwoSample(t, a, s = 0) {
return F(t, a, s);
}
static chunk(t, a) {
return O(t, a);
}
static factorial(t) {
return z(t);
}
static gamma(t) {
return C(t);
}
static approxEqual(t, a, s) {
return E(t, a, s);
}
static bisect(t, a, s, r, e) {
return N(t, a, s, r, e);
}
static coefficientOfVariation(t) {
return W(t);
}
static combinationsReplacement(t, a) {
return B(t, a);
}
static combinations(t, a) {
return G(t, a);
}
static combineMeans(t, a, s, r) {
return H(t, a, s, r);
}
static combineVariances(t, a, s, r, e, i) {
return I(t, a, s, r, e, i);
}
static cumulativeStdLogisticProbability(t) {
return J(t);
}
static extent(t) {
return K(t);
}
static gammaln(t) {
return Q(t);
}
static jenks(t, a) {
return U(t, a);
}
static logAverage(t) {
return X(t);
}
static logit(t) {
return Y(t);
}
static probit(t) {
return Z(t);
}
static quantileRank(t, a) {
return $(t, a);
}
static quickselect(t, a, s, r) {
const e = [ ...t ];
_(e, a, s, r);
return e;
}
static subtractFromMean(t, a, s) {
return tt(t, a, s);
}
static subtractFromAverage(t, a, s) {
return tt(t, a, s);
}
}
export { Statistics };