UNPKG

lakutata

Version:

An IoC-based universal application framework.

189 lines (186 loc) 4.26 kB
import { e as t, m as a, a as s, s as r, q as e, p as i, b as n, c, d as u, f as o, h as m, g as l, r as p, i as d, v as b, j as g, k as v, l as h, n as S, o as k, t as M, z as R, u as f, w as q, x as D, y as P, A as T, B as x, C as A, D as w, E as L, F as V, G as j, H as y, I as F, J as O, K as z, L as C, M as E, N, O as W, P as B, Q as G, R as H, S as I, T as J, U as K, V as Q, W as U, X, Y, Z, _ as $, $ as _, a0 as tt } from "../../../vendor/Package.16.mjs"; class Statistics { static { this.epsilon = t; } static min(t) { return a(t); } static max(t) { return s(t); } static sum(t) { return r(t); } static quantile(t, a) { return e(t, a); } static product(t) { return i(t); } static mean(t) { return n(t); } static average(t) { return n(t); } static addToMean(t, a, s) { return c(t, a, s); } static addToAverage(t, a, s) { return c(t, a, s); } static mode(t) { return u(t); } static median(t) { return o(t); } static harmonicMean(t) { return m(t); } static geometricMean(t) { return l(t); } static rootMeanSquare(t) { return p(t); } static sampleSkewness(t) { return d(t); } static variance(t) { return b(t); } static sampleVariance(t) { return g(t); } static standardDeviation(t) { return v(t); } static sampleStandardDeviation(t) { return h(t); } static medianAbsoluteDeviation(t) { return S(t); } static interquartileRange(t) { return k(t); } static sumNthPowerDeviations(t, a) { return M(t, a); } static zScore(t, a, s) { return R(t, a, s); } static correlation(t, a) { return f(t, a); } static sampleCovariance(t, a) { return q(t, a); } static rSquared(t) { return D(t, this.linearRegressionLine(this.linearRegression(t))); } static linearRegression(t) { return P(t); } static linearRegressionLine(t) { return T(t); } static shuffle(t) { return x(t); } static sampleWithReplacement(t, a) { return A(t, a); } static sample(t, a) { return w(t, a, Math.random); } static randomPickOne(t) { return this.sample(t, 1)[0]; } static randomPickMany(t, a) { return this.sample(t, a); } static bernoulliDistribution(t) { return L(t); } static binomialDistribution(t, a) { return V(t, a); } static poissonDistribution(t) { return j(t); } static tTest(t, a) { return y(t, a); } static tTestTwoSample(t, a, s = 0) { return F(t, a, s); } static chunk(t, a) { return O(t, a); } static factorial(t) { return z(t); } static gamma(t) { return C(t); } static approxEqual(t, a, s) { return E(t, a, s); } static bisect(t, a, s, r, e) { return N(t, a, s, r, e); } static coefficientOfVariation(t) { return W(t); } static combinationsReplacement(t, a) { return B(t, a); } static combinations(t, a) { return G(t, a); } static combineMeans(t, a, s, r) { return H(t, a, s, r); } static combineVariances(t, a, s, r, e, i) { return I(t, a, s, r, e, i); } static cumulativeStdLogisticProbability(t) { return J(t); } static extent(t) { return K(t); } static gammaln(t) { return Q(t); } static jenks(t, a) { return U(t, a); } static logAverage(t) { return X(t); } static logit(t) { return Y(t); } static probit(t) { return Z(t); } static quantileRank(t, a) { return $(t, a); } static quickselect(t, a, s, r) { const e = [ ...t ]; _(e, a, s, r); return e; } static subtractFromMean(t, a, s) { return tt(t, a, s); } static subtractFromAverage(t, a, s) { return tt(t, a, s); } } export { Statistics };