UNPKG

keras-js

Version:

Run Keras models in the browser, with GPU support using WebGL

59 lines (45 loc) 2.37 kB
<p align="center"> <a href="https://transcranial.github.io/keras-js"> <img src="https://cdn.rawgit.com/transcranial/keras-js/73aa4cca/assets/logo.svg" width="300px" /> </a> </p> <p align="center"> <strong>Run Keras models in the browser, with GPU support using WebGL</strong> </p> <div align="center"> <h3> <a href="https://transcranial.github.io/keras-js">Interactive Demos</a> <span> | </span> <a href="https://transcranial.github.io/keras-js-docs">Documentation</a> </h3> </div> <p align="center"> <a href="https://cdnjs.com/libraries/keras-js"> <img src="https://img.shields.io/cdnjs/v/keras-js.svg?style=flat-square" /> </a> <a href="https://www.npmjs.com/package/keras-js"> <img src="https://img.shields.io/npm/v/keras-js.svg?style=flat-square" /> </a> </p> <br/> --- Run [Keras](https://github.com/keras-team/keras) models in the browser, with GPU support provided by WebGL 2. Models can be run in Node.js as well, but only in CPU mode. Because Keras abstracts away a number of frameworks as backends, the models can be trained in any backend, including TensorFlow, CNTK, etc. Library version compatibility: Keras 2.1.2 ## [Interactive Demos](https://transcranial.github.io/keras-js) <p align="center"> <a href="https://transcranial.github.io/keras-js"><img src="demos/assets/mnist-cnn.png" height="120" width="auto" /></a> <a href="https://transcranial.github.io/keras-js"><img src="demos/assets/resnet50.png" height="120" width="auto" /></a> <a href="https://transcranial.github.io/keras-js"><img src="demos/assets/inception-v3.png" height="120" width="auto" /></a> <a href="https://transcranial.github.io/keras-js"><img src="demos/assets/imdb-bidirectional-lstm.png" height="120" width="auto" /></a> </p> Check out the `demos/` directory for real examples running Keras.js in VueJS. * Basic Convnet for MNIST * Convolutional Variational Autoencoder, trained on MNIST * Auxiliary Classifier Generative Adversarial Networks (AC-GAN) on MNIST * 50-layer Residual Network, trained on ImageNet * Inception v3, trained on ImageNet * DenseNet-121, trained on ImageNet * SqueezeNet v1.1, trained on ImageNet * Bidirectional LSTM for IMDB sentiment classification ## [Documentation](https://transcranial.github.io/keras-js-docs) [MIT License](https://github.com/transcranial/keras-js/blob/master/LICENSE)