keplerian-core
Version:
High-performance TypeScript library for orbital mechanics calculations, providing numerical integration, state propagation, and perturbation modeling for Keplerian orbits.
69 lines (68 loc) • 2.85 kB
JavaScript
/**
* Implements a simplified 2D orbit determination algorithm (e.g., using Gauss's method principles).
* This is a placeholder for a more robust implementation.
* For 2D, we can simplify by assuming a circular orbit or using a minimal set of observations.
*
* @param r1 - First position vector (2D).
* @param r2 - Second position vector (2D).
* @param r3 - Third position vector (2D).
* @param dt1 - Time difference between r1 and r2.
* @param dt2 - Time difference between r2 and r3.
* @returns An estimated OrbitalState (position and velocity) at the time of r2.
*/
export function determineOrbitFromPositions2D(r1, r2, r3, dt1, dt2) {
// This is a highly simplified placeholder. Real orbit determination is complex.
// For 2D, we can approximate velocity from position changes.
// Estimate velocity at r2 using finite differences
const v1 = {
x: (r2.x - r1.x) / dt1,
y: (r2.y - r1.y) / dt1,
};
const v2 = {
x: (r3.x - r2.x) / dt2,
y: (r3.y - r2.y) / dt2,
};
// Average the velocities to get a better estimate at r2
const velocity = {
x: (v1.x + v2.x) / 2,
y: (v1.y + v2.y) / 2,
};
return {
position: r2,
velocity: velocity,
};
}
/**
* Placeholder for a more advanced orbit determination method, e.g., a simple Kalman filter.
* This function would take a series of observations and refine the orbital state over time.
* @param observations - An array of observed position vectors with timestamps.
* @returns A refined OrbitalState.
*/
export function kalmanFilterOrbitDetermination2D(observations) {
// This is a conceptual placeholder. A real Kalman filter requires:
// 1. A state transition model (from physics/integrators)
// 2. A measurement model
// 3. Covariance matrices for process and measurement noise
// 4. Iterative prediction and update steps
if (observations.length === 0) {
throw new Error('No observations provided for Kalman filter.');
}
// For a very basic placeholder, just return the last observation's position
// and a zero velocity, or extrapolate from the last two if available.
const lastObservation = observations[observations.length - 1];
let estimatedVelocity = { x: 0, y: 0 };
if (observations.length >= 2) {
const secondLastObservation = observations[observations.length - 2];
const dt = lastObservation.timestamp - secondLastObservation.timestamp;
if (dt > 0) {
estimatedVelocity = {
x: (lastObservation.position.x - secondLastObservation.position.x) / dt,
y: (lastObservation.position.y - secondLastObservation.position.y) / dt,
};
}
}
return {
position: lastObservation.position,
velocity: estimatedVelocity,
};
}