UNPKG

keplerian-core

Version:

High-performance TypeScript library for orbital mechanics calculations, providing numerical integration, state propagation, and perturbation modeling for Keplerian orbits.

69 lines (68 loc) 2.85 kB
/** * Implements a simplified 2D orbit determination algorithm (e.g., using Gauss's method principles). * This is a placeholder for a more robust implementation. * For 2D, we can simplify by assuming a circular orbit or using a minimal set of observations. * * @param r1 - First position vector (2D). * @param r2 - Second position vector (2D). * @param r3 - Third position vector (2D). * @param dt1 - Time difference between r1 and r2. * @param dt2 - Time difference between r2 and r3. * @returns An estimated OrbitalState (position and velocity) at the time of r2. */ export function determineOrbitFromPositions2D(r1, r2, r3, dt1, dt2) { // This is a highly simplified placeholder. Real orbit determination is complex. // For 2D, we can approximate velocity from position changes. // Estimate velocity at r2 using finite differences const v1 = { x: (r2.x - r1.x) / dt1, y: (r2.y - r1.y) / dt1, }; const v2 = { x: (r3.x - r2.x) / dt2, y: (r3.y - r2.y) / dt2, }; // Average the velocities to get a better estimate at r2 const velocity = { x: (v1.x + v2.x) / 2, y: (v1.y + v2.y) / 2, }; return { position: r2, velocity: velocity, }; } /** * Placeholder for a more advanced orbit determination method, e.g., a simple Kalman filter. * This function would take a series of observations and refine the orbital state over time. * @param observations - An array of observed position vectors with timestamps. * @returns A refined OrbitalState. */ export function kalmanFilterOrbitDetermination2D(observations) { // This is a conceptual placeholder. A real Kalman filter requires: // 1. A state transition model (from physics/integrators) // 2. A measurement model // 3. Covariance matrices for process and measurement noise // 4. Iterative prediction and update steps if (observations.length === 0) { throw new Error('No observations provided for Kalman filter.'); } // For a very basic placeholder, just return the last observation's position // and a zero velocity, or extrapolate from the last two if available. const lastObservation = observations[observations.length - 1]; let estimatedVelocity = { x: 0, y: 0 }; if (observations.length >= 2) { const secondLastObservation = observations[observations.length - 2]; const dt = lastObservation.timestamp - secondLastObservation.timestamp; if (dt > 0) { estimatedVelocity = { x: (lastObservation.position.x - secondLastObservation.position.x) / dt, y: (lastObservation.position.y - secondLastObservation.position.y) / dt, }; } } return { position: lastObservation.position, velocity: estimatedVelocity, }; }