UNPKG

kepler.gl

Version:

kepler.gl is a webgl based application to visualize large scale location data in the browser

211 lines (210 loc) 8.2 kB
import * as arrow from 'apache-arrow'; import { ArrowTable } from '@loaders.gl/schema'; import { ProcessorResult, Field } from '@kepler.gl/types'; import { isPlainObject } from '@kepler.gl/utils'; import { analyzerTypeToFieldType, getFieldsFromData } from '@kepler.gl/common-utils'; import { ParsedDataset, SavedMap, LoadedMap } from '@kepler.gl/schemas'; export declare const CSV_NULLS: RegExp; declare function tryParseJsonString(str: any): any; export declare const PARSE_FIELD_VALUE_FROM_STRING: { boolean: { valid: (d: unknown) => boolean; parse: (d: unknown) => boolean; }; integer: { valid: (d: unknown) => boolean; parse: (d: unknown) => number; }; timestamp: { valid: (d: unknown, field: Field) => boolean; parse: (d: any, field: Field) => any; }; real: { valid: (d: unknown) => boolean; parse: typeof parseFloat; }; object: { valid: typeof isPlainObject; parse: typeof tryParseJsonString; }; array: { valid: (arg: any) => arg is any[]; parse: typeof tryParseJsonString; }; h3: { valid: (d: any) => boolean; parse: (d: any) => any; }; }; /** * Process csv data, output a data object with `{fields: [], rows: []}`. * The data object can be wrapped in a `dataset` and pass to [`addDataToMap`](../actions/actions.md#adddatatomap) * @param rawData raw csv string * @returns data object `{fields: [], rows: []}` can be passed to addDataToMaps * @public * @example * import {processCsvData} from 'kepler.gl/processors'; * * const testData = `gps_data.utc_timestamp,gps_data.lat,gps_data.lng,gps_data.types,epoch,has_result,id,time,begintrip_ts_utc,begintrip_ts_local,date * 2016-09-17 00:09:55,29.9900937,31.2590542,driver_analytics,1472688000000,False,1,2016-09-23T00:00:00.000Z,2016-10-01 09:41:39+00:00,2016-10-01 09:41:39+00:00,2016-09-23 * 2016-09-17 00:10:56,29.9927699,31.2461142,driver_analytics,1472688000000,False,2,2016-09-23T00:00:00.000Z,2016-10-01 09:46:37+00:00,2016-10-01 16:46:37+00:00,2016-09-23 * 2016-09-17 00:11:56,29.9907261,31.2312742,driver_analytics,1472688000000,False,3,2016-09-23T00:00:00.000Z,,,2016-09-23 * 2016-09-17 00:12:58,29.9870074,31.2175827,driver_analytics,1472688000000,False,4,2016-09-23T00:00:00.000Z,,,2016-09-23` * * const dataset = { * info: {id: 'test_data', label: 'My Csv'}, * data: processCsvData(testData) * }; * * dispatch(addDataToMap({ * datasets: [dataset], * options: {centerMap: true, readOnly: true} * })); */ export declare function processCsvData(rawData: unknown[][] | string, header?: string[]): ProcessorResult; /** * Parse rows of csv by analyzed field types. So that `'1'` -> `1`, `'True'` -> `true` * @param rows * @param fields */ export declare function parseRowsByFields(rows: any[][], fields: Field[]): any[][]; /** * Process uploaded csv file to parse value by field type * * @param rows * @param geoFieldIdx field index * @param field * @param i */ export declare function parseCsvRowsByFieldType(rows: unknown[][], geoFieldIdx: number, field: Field, i: number): void; /** * Process data where each row is an object, output can be passed to [`addDataToMap`](../actions/actions.md#adddatatomap) * NOTE: This function may mutate input. * @param rawData an array of row object, each object should have the same number of keys * @returns dataset containing `fields` and `rows` * @public * @example * import {addDataToMap} from 'kepler.gl/actions'; * import {processRowObject} from 'kepler.gl/processors'; * * const data = [ * {lat: 31.27, lng: 127.56, value: 3}, * {lat: 31.22, lng: 126.26, value: 1} * ]; * * dispatch(addDataToMap({ * datasets: { * info: {label: 'My Data', id: 'my_data'}, * data: processRowObject(data) * } * })); */ export declare function processRowObject(rawData: unknown[]): ProcessorResult; /** * Process GeoJSON [`FeatureCollection`](http://wiki.geojson.org/GeoJSON_draft_version_6#FeatureCollection), * output a data object with `{fields: [], rows: []}`. * The data object can be wrapped in a `dataset` and passed to [`addDataToMap`](../actions/actions.md#adddatatomap) * NOTE: This function may mutate input. * * @param rawData raw geojson feature collection * @returns dataset containing `fields` and `rows` * @public * @example * import {addDataToMap} from 'kepler.gl/actions'; * import {processGeojson} from 'kepler.gl/processors'; * * const geojson = { * "type" : "FeatureCollection", * "features" : [{ * "type" : "Feature", * "properties" : { * "capacity" : "10", * "type" : "U-Rack" * }, * "geometry" : { * "type" : "Point", * "coordinates" : [ -71.073283, 42.417500 ] * } * }] * }; * * dispatch(addDataToMap({ * datasets: { * info: { * label: 'Sample Taxi Trips in New York City', * id: 'test_trip_data' * }, * data: processGeojson(geojson) * } * })); */ export declare function processGeojson(rawData: unknown): ProcessorResult; /** * Process saved kepler.gl json to be pass to [`addDataToMap`](../actions/actions.md#adddatatomap). * The json object should contain `datasets` and `config`. * @param rawData * @param schema * @returns datasets and config `{datasets: {}, config: {}}` * @public * @example * import {addDataToMap} from 'kepler.gl/actions'; * import {processKeplerglJSON} from 'kepler.gl/processors'; * * dispatch(addDataToMap(processKeplerglJSON(keplerGlJson))); */ export declare function processKeplerglJSON(rawData: SavedMap, schema?: import("@kepler.gl/schemas").KeplerGLSchemaClass): LoadedMap | null; /** * Parse a single or an array of datasets saved using kepler.gl schema * @param rawData * @param schema */ export declare function processKeplerglDataset(rawData: object | object[], schema?: import("@kepler.gl/schemas").KeplerGLSchemaClass): ParsedDataset | ParsedDataset[] | null; /** * Parse arrow table and return a dataset * * @param arrowTable ArrowTable to parse, see loaders.gl/schema * @returns dataset containing `fields` and `rows` or null */ export declare function processArrowTable(arrowTable: ArrowTable): ProcessorResult | null; /** * Extracts GeoArrow metadata from an Apache Arrow table schema. * For geoparquet files geoarrow metadata isn't present in fields, so extract extra info from schema. * @param table The Apache Arrow table to extract metadata from. * @returns An object mapping column names to their GeoArrow encoding type. * @throws Logs an error message if parsing of metadata fails. */ export declare function getGeoArrowMetadataFromSchema(table: arrow.Table): Record<string, string>; /** * Converts an Apache Arrow table schema into an array of Kepler.gl field objects. * @param table The Apache Arrow table whose schema needs to be converted. * @param fieldTypeSuggestions Optional mapping of field names to suggested field types. * @returns An array of field objects suitable for Kepler.gl. */ export declare function arrowSchemaToFields(table: arrow.Table, fieldTypeSuggestions?: Record<string, string>): Field[]; /** * Parse arrow batches returned from parseInBatches() * * @param arrowTable the arrow table to parse * @returns dataset containing `fields` and `rows` or null */ export declare function processArrowBatches(arrowBatches: arrow.RecordBatch[]): ProcessorResult | null; export declare const DATASET_HANDLERS: { row: typeof processRowObject; geojson: typeof processGeojson; csv: typeof processCsvData; arrow: typeof processArrowTable; keplergl: typeof processKeplerglDataset; }; export declare const Processors: { processGeojson: typeof processGeojson; processCsvData: typeof processCsvData; processArrowTable: typeof processArrowTable; processArrowBatches: typeof processArrowBatches; processRowObject: typeof processRowObject; processKeplerglJSON: typeof processKeplerglJSON; processKeplerglDataset: typeof processKeplerglDataset; analyzerTypeToFieldType: typeof analyzerTypeToFieldType; getFieldsFromData: typeof getFieldsFromData; parseCsvRowsByFieldType: typeof parseCsvRowsByFieldType; }; export {};