UNPKG

kepler.gl

Version:

kepler.gl is a webgl based application to visualize large scale location data in the browser

72 lines (66 loc) 2.45 kB
// Copyright (c) 2020 Uber Technologies, Inc. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. import {deviation, min, max, mean, median, sum, variance} from 'd3-array'; import {AGGREGATION_TYPES} from 'constants/default-settings'; export const getFrequency = data => data.reduce( (uniques, val) => ({ ...uniques, [val]: (uniques[val] || 0) + 1 }), {} ); export const getMode = data => { const occur = getFrequency(data); return Object.keys(occur).reduce( (prev, key) => (occur[prev] >= occur[key] ? prev : key), Object.keys(occur)[0] ); }; export function aggregate(data, technique) { switch (technique) { case AGGREGATION_TYPES.average: return mean(data); case AGGREGATION_TYPES.countUnique: return Object.keys( data.reduce((uniques, val) => { uniques[val] = uniques[val] || 0; uniques[val] += 1; return uniques; }, {}) ).length; case AGGREGATION_TYPES.mode: return getMode(data); case AGGREGATION_TYPES.maximum: return max(data); case AGGREGATION_TYPES.minimum: return min(data); case AGGREGATION_TYPES.median: return median(data); case AGGREGATION_TYPES.stdev: return deviation(data); case AGGREGATION_TYPES.sum: return sum(data); case AGGREGATION_TYPES.variance: return variance(data); default: return data.length; } }