kepler.gl
Version:
kepler.gl is a webgl based application to visualize large scale location data in the browser
57 lines (47 loc) • 2.02 kB
JavaScript
// Copyright (c) 2018 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
import {WebMercatorViewport} from 'deck.gl';
export function hexagonToPolygonGeo({object}, properties, radius, mapState) {
const viewport = new WebMercatorViewport(mapState);
const screenCenter = viewport.projectFlat(object.centroid);
const {pixelsPerMeter} = viewport.getDistanceScales();
const pixRadius = radius * pixelsPerMeter[0];
const coordinates = [];
for (let i = 0; i < 6; i++) {
const vertex = hex_corner(screenCenter, pixRadius, i);
coordinates.push(viewport.unprojectFlat(vertex));
}
coordinates.push(coordinates[0]);
return {
geometry: {
coordinates,
type: 'LineString'
},
properties
};
}
function hex_corner(center, radius, i) {
const angle_deg = 60 * i + 30;
const angle_rad = Math.PI / 180 * angle_deg;
return [
center[0] + radius * Math.cos(angle_rad),
center[1] + radius * Math.sin(angle_rad)
];
}