UNPKG

keen-botkit

Version:

Bot Kit Integration for Keen IO

1,938 lines (1,604 loc) 451 kB
// https://d3js.org Version 4.4.1. Copyright 2017 Mike Bostock. (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (factory((global.d3 = global.d3 || {}))); }(this, (function (exports) { 'use strict'; var version = "4.4.1"; var ascending = function(a, b) { return a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN; }; var bisector = function(compare) { if (compare.length === 1) compare = ascendingComparator(compare); return { left: function(a, x, lo, hi) { if (lo == null) lo = 0; if (hi == null) hi = a.length; while (lo < hi) { var mid = lo + hi >>> 1; if (compare(a[mid], x) < 0) lo = mid + 1; else hi = mid; } return lo; }, right: function(a, x, lo, hi) { if (lo == null) lo = 0; if (hi == null) hi = a.length; while (lo < hi) { var mid = lo + hi >>> 1; if (compare(a[mid], x) > 0) hi = mid; else lo = mid + 1; } return lo; } }; }; function ascendingComparator(f) { return function(d, x) { return ascending(f(d), x); }; } var ascendingBisect = bisector(ascending); var bisectRight = ascendingBisect.right; var bisectLeft = ascendingBisect.left; var descending = function(a, b) { return b < a ? -1 : b > a ? 1 : b >= a ? 0 : NaN; }; var number = function(x) { return x === null ? NaN : +x; }; var variance = function(array, f) { var n = array.length, m = 0, a, d, s = 0, i = -1, j = 0; if (f == null) { while (++i < n) { if (!isNaN(a = number(array[i]))) { d = a - m; m += d / ++j; s += d * (a - m); } } } else { while (++i < n) { if (!isNaN(a = number(f(array[i], i, array)))) { d = a - m; m += d / ++j; s += d * (a - m); } } } if (j > 1) return s / (j - 1); }; var deviation = function(array, f) { var v = variance(array, f); return v ? Math.sqrt(v) : v; }; var extent = function(array, f) { var i = -1, n = array.length, a, b, c; if (f == null) { while (++i < n) if ((b = array[i]) != null && b >= b) { a = c = b; break; } while (++i < n) if ((b = array[i]) != null) { if (a > b) a = b; if (c < b) c = b; } } else { while (++i < n) if ((b = f(array[i], i, array)) != null && b >= b) { a = c = b; break; } while (++i < n) if ((b = f(array[i], i, array)) != null) { if (a > b) a = b; if (c < b) c = b; } } return [a, c]; }; var array = Array.prototype; var slice = array.slice; var map = array.map; var constant = function(x) { return function() { return x; }; }; var identity = function(x) { return x; }; var range = function(start, stop, step) { start = +start, stop = +stop, step = (n = arguments.length) < 2 ? (stop = start, start = 0, 1) : n < 3 ? 1 : +step; var i = -1, n = Math.max(0, Math.ceil((stop - start) / step)) | 0, range = new Array(n); while (++i < n) { range[i] = start + i * step; } return range; }; var e10 = Math.sqrt(50); var e5 = Math.sqrt(10); var e2 = Math.sqrt(2); var ticks = function(start, stop, count) { var step = tickStep(start, stop, count); return range( Math.ceil(start / step) * step, Math.floor(stop / step) * step + step / 2, // inclusive step ); }; function tickStep(start, stop, count) { var step0 = Math.abs(stop - start) / Math.max(0, count), step1 = Math.pow(10, Math.floor(Math.log(step0) / Math.LN10)), error = step0 / step1; if (error >= e10) step1 *= 10; else if (error >= e5) step1 *= 5; else if (error >= e2) step1 *= 2; return stop < start ? -step1 : step1; } var sturges = function(values) { return Math.ceil(Math.log(values.length) / Math.LN2) + 1; }; var histogram = function() { var value = identity, domain = extent, threshold = sturges; function histogram(data) { var i, n = data.length, x, values = new Array(n); for (i = 0; i < n; ++i) { values[i] = value(data[i], i, data); } var xz = domain(values), x0 = xz[0], x1 = xz[1], tz = threshold(values, x0, x1); // Convert number of thresholds into uniform thresholds. if (!Array.isArray(tz)) tz = ticks(x0, x1, tz); // Remove any thresholds outside the domain. var m = tz.length; while (tz[0] <= x0) tz.shift(), --m; while (tz[m - 1] >= x1) tz.pop(), --m; var bins = new Array(m + 1), bin; // Initialize bins. for (i = 0; i <= m; ++i) { bin = bins[i] = []; bin.x0 = i > 0 ? tz[i - 1] : x0; bin.x1 = i < m ? tz[i] : x1; } // Assign data to bins by value, ignoring any outside the domain. for (i = 0; i < n; ++i) { x = values[i]; if (x0 <= x && x <= x1) { bins[bisectRight(tz, x, 0, m)].push(data[i]); } } return bins; } histogram.value = function(_) { return arguments.length ? (value = typeof _ === "function" ? _ : constant(_), histogram) : value; }; histogram.domain = function(_) { return arguments.length ? (domain = typeof _ === "function" ? _ : constant([_[0], _[1]]), histogram) : domain; }; histogram.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant(slice.call(_)) : constant(_), histogram) : threshold; }; return histogram; }; var threshold = function(array, p, f) { if (f == null) f = number; if (!(n = array.length)) return; if ((p = +p) <= 0 || n < 2) return +f(array[0], 0, array); if (p >= 1) return +f(array[n - 1], n - 1, array); var n, h = (n - 1) * p, i = Math.floor(h), a = +f(array[i], i, array), b = +f(array[i + 1], i + 1, array); return a + (b - a) * (h - i); }; var freedmanDiaconis = function(values, min, max) { values = map.call(values, number).sort(ascending); return Math.ceil((max - min) / (2 * (threshold(values, 0.75) - threshold(values, 0.25)) * Math.pow(values.length, -1 / 3))); }; var scott = function(values, min, max) { return Math.ceil((max - min) / (3.5 * deviation(values) * Math.pow(values.length, -1 / 3))); }; var max = function(array, f) { var i = -1, n = array.length, a, b; if (f == null) { while (++i < n) if ((b = array[i]) != null && b >= b) { a = b; break; } while (++i < n) if ((b = array[i]) != null && b > a) a = b; } else { while (++i < n) if ((b = f(array[i], i, array)) != null && b >= b) { a = b; break; } while (++i < n) if ((b = f(array[i], i, array)) != null && b > a) a = b; } return a; }; var mean = function(array, f) { var s = 0, n = array.length, a, i = -1, j = n; if (f == null) { while (++i < n) if (!isNaN(a = number(array[i]))) s += a; else --j; } else { while (++i < n) if (!isNaN(a = number(f(array[i], i, array)))) s += a; else --j; } if (j) return s / j; }; var median = function(array, f) { var numbers = [], n = array.length, a, i = -1; if (f == null) { while (++i < n) if (!isNaN(a = number(array[i]))) numbers.push(a); } else { while (++i < n) if (!isNaN(a = number(f(array[i], i, array)))) numbers.push(a); } return threshold(numbers.sort(ascending), 0.5); }; var merge = function(arrays) { var n = arrays.length, m, i = -1, j = 0, merged, array; while (++i < n) j += arrays[i].length; merged = new Array(j); while (--n >= 0) { array = arrays[n]; m = array.length; while (--m >= 0) { merged[--j] = array[m]; } } return merged; }; var min = function(array, f) { var i = -1, n = array.length, a, b; if (f == null) { while (++i < n) if ((b = array[i]) != null && b >= b) { a = b; break; } while (++i < n) if ((b = array[i]) != null && a > b) a = b; } else { while (++i < n) if ((b = f(array[i], i, array)) != null && b >= b) { a = b; break; } while (++i < n) if ((b = f(array[i], i, array)) != null && a > b) a = b; } return a; }; var pairs = function(array) { var i = 0, n = array.length - 1, p = array[0], pairs = new Array(n < 0 ? 0 : n); while (i < n) pairs[i] = [p, p = array[++i]]; return pairs; }; var permute = function(array, indexes) { var i = indexes.length, permutes = new Array(i); while (i--) permutes[i] = array[indexes[i]]; return permutes; }; var scan = function(array, compare) { if (!(n = array.length)) return; var i = 0, n, j = 0, xi, xj = array[j]; if (!compare) compare = ascending; while (++i < n) if (compare(xi = array[i], xj) < 0 || compare(xj, xj) !== 0) xj = xi, j = i; if (compare(xj, xj) === 0) return j; }; var shuffle = function(array, i0, i1) { var m = (i1 == null ? array.length : i1) - (i0 = i0 == null ? 0 : +i0), t, i; while (m) { i = Math.random() * m-- | 0; t = array[m + i0]; array[m + i0] = array[i + i0]; array[i + i0] = t; } return array; }; var sum = function(array, f) { var s = 0, n = array.length, a, i = -1; if (f == null) { while (++i < n) if (a = +array[i]) s += a; // Note: zero and null are equivalent. } else { while (++i < n) if (a = +f(array[i], i, array)) s += a; } return s; }; var transpose = function(matrix) { if (!(n = matrix.length)) return []; for (var i = -1, m = min(matrix, length), transpose = new Array(m); ++i < m;) { for (var j = -1, n, row = transpose[i] = new Array(n); ++j < n;) { row[j] = matrix[j][i]; } } return transpose; }; function length(d) { return d.length; } var zip = function() { return transpose(arguments); }; var prefix = "$"; function Map() {} Map.prototype = map$1.prototype = { constructor: Map, has: function(key) { return (prefix + key) in this; }, get: function(key) { return this[prefix + key]; }, set: function(key, value) { this[prefix + key] = value; return this; }, remove: function(key) { var property = prefix + key; return property in this && delete this[property]; }, clear: function() { for (var property in this) if (property[0] === prefix) delete this[property]; }, keys: function() { var keys = []; for (var property in this) if (property[0] === prefix) keys.push(property.slice(1)); return keys; }, values: function() { var values = []; for (var property in this) if (property[0] === prefix) values.push(this[property]); return values; }, entries: function() { var entries = []; for (var property in this) if (property[0] === prefix) entries.push({key: property.slice(1), value: this[property]}); return entries; }, size: function() { var size = 0; for (var property in this) if (property[0] === prefix) ++size; return size; }, empty: function() { for (var property in this) if (property[0] === prefix) return false; return true; }, each: function(f) { for (var property in this) if (property[0] === prefix) f(this[property], property.slice(1), this); } }; function map$1(object, f) { var map = new Map; // Copy constructor. if (object instanceof Map) object.each(function(value, key) { map.set(key, value); }); // Index array by numeric index or specified key function. else if (Array.isArray(object)) { var i = -1, n = object.length, o; if (f == null) while (++i < n) map.set(i, object[i]); else while (++i < n) map.set(f(o = object[i], i, object), o); } // Convert object to map. else if (object) for (var key in object) map.set(key, object[key]); return map; } var nest = function() { var keys = [], sortKeys = [], sortValues, rollup, nest; function apply(array, depth, createResult, setResult) { if (depth >= keys.length) return rollup != null ? rollup(array) : (sortValues != null ? array.sort(sortValues) : array); var i = -1, n = array.length, key = keys[depth++], keyValue, value, valuesByKey = map$1(), values, result = createResult(); while (++i < n) { if (values = valuesByKey.get(keyValue = key(value = array[i]) + "")) { values.push(value); } else { valuesByKey.set(keyValue, [value]); } } valuesByKey.each(function(values, key) { setResult(result, key, apply(values, depth, createResult, setResult)); }); return result; } function entries(map, depth) { if (++depth > keys.length) return map; var array, sortKey = sortKeys[depth - 1]; if (rollup != null && depth >= keys.length) array = map.entries(); else array = [], map.each(function(v, k) { array.push({key: k, values: entries(v, depth)}); }); return sortKey != null ? array.sort(function(a, b) { return sortKey(a.key, b.key); }) : array; } return nest = { object: function(array) { return apply(array, 0, createObject, setObject); }, map: function(array) { return apply(array, 0, createMap, setMap); }, entries: function(array) { return entries(apply(array, 0, createMap, setMap), 0); }, key: function(d) { keys.push(d); return nest; }, sortKeys: function(order) { sortKeys[keys.length - 1] = order; return nest; }, sortValues: function(order) { sortValues = order; return nest; }, rollup: function(f) { rollup = f; return nest; } }; }; function createObject() { return {}; } function setObject(object, key, value) { object[key] = value; } function createMap() { return map$1(); } function setMap(map, key, value) { map.set(key, value); } function Set() {} var proto = map$1.prototype; Set.prototype = set.prototype = { constructor: Set, has: proto.has, add: function(value) { value += ""; this[prefix + value] = value; return this; }, remove: proto.remove, clear: proto.clear, values: proto.keys, size: proto.size, empty: proto.empty, each: proto.each }; function set(object, f) { var set = new Set; // Copy constructor. if (object instanceof Set) object.each(function(value) { set.add(value); }); // Otherwise, assume it’s an array. else if (object) { var i = -1, n = object.length; if (f == null) while (++i < n) set.add(object[i]); else while (++i < n) set.add(f(object[i], i, object)); } return set; } var keys = function(map) { var keys = []; for (var key in map) keys.push(key); return keys; }; var values = function(map) { var values = []; for (var key in map) values.push(map[key]); return values; }; var entries = function(map) { var entries = []; for (var key in map) entries.push({key: key, value: map[key]}); return entries; }; var uniform = function(min, max) { min = min == null ? 0 : +min; max = max == null ? 1 : +max; if (arguments.length === 1) max = min, min = 0; else max -= min; return function() { return Math.random() * max + min; }; }; var normal = function(mu, sigma) { var x, r; mu = mu == null ? 0 : +mu; sigma = sigma == null ? 1 : +sigma; return function() { var y; // If available, use the second previously-generated uniform random. if (x != null) y = x, x = null; // Otherwise, generate a new x and y. else do { x = Math.random() * 2 - 1; y = Math.random() * 2 - 1; r = x * x + y * y; } while (!r || r > 1); return mu + sigma * y * Math.sqrt(-2 * Math.log(r) / r); }; }; var logNormal = function() { var randomNormal = normal.apply(this, arguments); return function() { return Math.exp(randomNormal()); }; }; var irwinHall = function(n) { return function() { for (var sum = 0, i = 0; i < n; ++i) sum += Math.random(); return sum; }; }; var bates = function(n) { var randomIrwinHall = irwinHall(n); return function() { return randomIrwinHall() / n; }; }; var exponential = function(lambda) { return function() { return -Math.log(1 - Math.random()) / lambda; }; }; function linear(t) { return +t; } function quadIn(t) { return t * t; } function quadOut(t) { return t * (2 - t); } function quadInOut(t) { return ((t *= 2) <= 1 ? t * t : --t * (2 - t) + 1) / 2; } function cubicIn(t) { return t * t * t; } function cubicOut(t) { return --t * t * t + 1; } function cubicInOut(t) { return ((t *= 2) <= 1 ? t * t * t : (t -= 2) * t * t + 2) / 2; } var exponent = 3; var polyIn = (function custom(e) { e = +e; function polyIn(t) { return Math.pow(t, e); } polyIn.exponent = custom; return polyIn; })(exponent); var polyOut = (function custom(e) { e = +e; function polyOut(t) { return 1 - Math.pow(1 - t, e); } polyOut.exponent = custom; return polyOut; })(exponent); var polyInOut = (function custom(e) { e = +e; function polyInOut(t) { return ((t *= 2) <= 1 ? Math.pow(t, e) : 2 - Math.pow(2 - t, e)) / 2; } polyInOut.exponent = custom; return polyInOut; })(exponent); var pi = Math.PI; var halfPi = pi / 2; function sinIn(t) { return 1 - Math.cos(t * halfPi); } function sinOut(t) { return Math.sin(t * halfPi); } function sinInOut(t) { return (1 - Math.cos(pi * t)) / 2; } function expIn(t) { return Math.pow(2, 10 * t - 10); } function expOut(t) { return 1 - Math.pow(2, -10 * t); } function expInOut(t) { return ((t *= 2) <= 1 ? Math.pow(2, 10 * t - 10) : 2 - Math.pow(2, 10 - 10 * t)) / 2; } function circleIn(t) { return 1 - Math.sqrt(1 - t * t); } function circleOut(t) { return Math.sqrt(1 - --t * t); } function circleInOut(t) { return ((t *= 2) <= 1 ? 1 - Math.sqrt(1 - t * t) : Math.sqrt(1 - (t -= 2) * t) + 1) / 2; } var b1 = 4 / 11; var b2 = 6 / 11; var b3 = 8 / 11; var b4 = 3 / 4; var b5 = 9 / 11; var b6 = 10 / 11; var b7 = 15 / 16; var b8 = 21 / 22; var b9 = 63 / 64; var b0 = 1 / b1 / b1; function bounceIn(t) { return 1 - bounceOut(1 - t); } function bounceOut(t) { return (t = +t) < b1 ? b0 * t * t : t < b3 ? b0 * (t -= b2) * t + b4 : t < b6 ? b0 * (t -= b5) * t + b7 : b0 * (t -= b8) * t + b9; } function bounceInOut(t) { return ((t *= 2) <= 1 ? 1 - bounceOut(1 - t) : bounceOut(t - 1) + 1) / 2; } var overshoot = 1.70158; var backIn = (function custom(s) { s = +s; function backIn(t) { return t * t * ((s + 1) * t - s); } backIn.overshoot = custom; return backIn; })(overshoot); var backOut = (function custom(s) { s = +s; function backOut(t) { return --t * t * ((s + 1) * t + s) + 1; } backOut.overshoot = custom; return backOut; })(overshoot); var backInOut = (function custom(s) { s = +s; function backInOut(t) { return ((t *= 2) < 1 ? t * t * ((s + 1) * t - s) : (t -= 2) * t * ((s + 1) * t + s) + 2) / 2; } backInOut.overshoot = custom; return backInOut; })(overshoot); var tau = 2 * Math.PI; var amplitude = 1; var period = 0.3; var elasticIn = (function custom(a, p) { var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau); function elasticIn(t) { return a * Math.pow(2, 10 * --t) * Math.sin((s - t) / p); } elasticIn.amplitude = function(a) { return custom(a, p * tau); }; elasticIn.period = function(p) { return custom(a, p); }; return elasticIn; })(amplitude, period); var elasticOut = (function custom(a, p) { var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau); function elasticOut(t) { return 1 - a * Math.pow(2, -10 * (t = +t)) * Math.sin((t + s) / p); } elasticOut.amplitude = function(a) { return custom(a, p * tau); }; elasticOut.period = function(p) { return custom(a, p); }; return elasticOut; })(amplitude, period); var elasticInOut = (function custom(a, p) { var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau); function elasticInOut(t) { return ((t = t * 2 - 1) < 0 ? a * Math.pow(2, 10 * t) * Math.sin((s - t) / p) : 2 - a * Math.pow(2, -10 * t) * Math.sin((s + t) / p)) / 2; } elasticInOut.amplitude = function(a) { return custom(a, p * tau); }; elasticInOut.period = function(p) { return custom(a, p); }; return elasticInOut; })(amplitude, period); var area = function(polygon) { var i = -1, n = polygon.length, a, b = polygon[n - 1], area = 0; while (++i < n) { a = b; b = polygon[i]; area += a[1] * b[0] - a[0] * b[1]; } return area / 2; }; var centroid = function(polygon) { var i = -1, n = polygon.length, x = 0, y = 0, a, b = polygon[n - 1], c, k = 0; while (++i < n) { a = b; b = polygon[i]; k += c = a[0] * b[1] - b[0] * a[1]; x += (a[0] + b[0]) * c; y += (a[1] + b[1]) * c; } return k *= 3, [x / k, y / k]; }; // Returns the 2D cross product of AB and AC vectors, i.e., the z-component of // the 3D cross product in a quadrant I Cartesian coordinate system (+x is // right, +y is up). Returns a positive value if ABC is counter-clockwise, // negative if clockwise, and zero if the points are collinear. var cross = function(a, b, c) { return (b[0] - a[0]) * (c[1] - a[1]) - (b[1] - a[1]) * (c[0] - a[0]); }; function lexicographicOrder(a, b) { return a[0] - b[0] || a[1] - b[1]; } // Computes the upper convex hull per the monotone chain algorithm. // Assumes points.length >= 3, is sorted by x, unique in y. // Returns an array of indices into points in left-to-right order. function computeUpperHullIndexes(points) { var n = points.length, indexes = [0, 1], size = 2; for (var i = 2; i < n; ++i) { while (size > 1 && cross(points[indexes[size - 2]], points[indexes[size - 1]], points[i]) <= 0) --size; indexes[size++] = i; } return indexes.slice(0, size); // remove popped points } var hull = function(points) { if ((n = points.length) < 3) return null; var i, n, sortedPoints = new Array(n), flippedPoints = new Array(n); for (i = 0; i < n; ++i) sortedPoints[i] = [+points[i][0], +points[i][1], i]; sortedPoints.sort(lexicographicOrder); for (i = 0; i < n; ++i) flippedPoints[i] = [sortedPoints[i][0], -sortedPoints[i][1]]; var upperIndexes = computeUpperHullIndexes(sortedPoints), lowerIndexes = computeUpperHullIndexes(flippedPoints); // Construct the hull polygon, removing possible duplicate endpoints. var skipLeft = lowerIndexes[0] === upperIndexes[0], skipRight = lowerIndexes[lowerIndexes.length - 1] === upperIndexes[upperIndexes.length - 1], hull = []; // Add upper hull in right-to-l order. // Then add lower hull in left-to-right order. for (i = upperIndexes.length - 1; i >= 0; --i) hull.push(points[sortedPoints[upperIndexes[i]][2]]); for (i = +skipLeft; i < lowerIndexes.length - skipRight; ++i) hull.push(points[sortedPoints[lowerIndexes[i]][2]]); return hull; }; var contains = function(polygon, point) { var n = polygon.length, p = polygon[n - 1], x = point[0], y = point[1], x0 = p[0], y0 = p[1], x1, y1, inside = false; for (var i = 0; i < n; ++i) { p = polygon[i], x1 = p[0], y1 = p[1]; if (((y1 > y) !== (y0 > y)) && (x < (x0 - x1) * (y - y1) / (y0 - y1) + x1)) inside = !inside; x0 = x1, y0 = y1; } return inside; }; var length$1 = function(polygon) { var i = -1, n = polygon.length, b = polygon[n - 1], xa, ya, xb = b[0], yb = b[1], perimeter = 0; while (++i < n) { xa = xb; ya = yb; b = polygon[i]; xb = b[0]; yb = b[1]; xa -= xb; ya -= yb; perimeter += Math.sqrt(xa * xa + ya * ya); } return perimeter; }; var pi$1 = Math.PI; var tau$1 = 2 * pi$1; var epsilon = 1e-6; var tauEpsilon = tau$1 - epsilon; function Path() { this._x0 = this._y0 = // start of current subpath this._x1 = this._y1 = null; // end of current subpath this._ = ""; } function path() { return new Path; } Path.prototype = path.prototype = { constructor: Path, moveTo: function(x, y) { this._ += "M" + (this._x0 = this._x1 = +x) + "," + (this._y0 = this._y1 = +y); }, closePath: function() { if (this._x1 !== null) { this._x1 = this._x0, this._y1 = this._y0; this._ += "Z"; } }, lineTo: function(x, y) { this._ += "L" + (this._x1 = +x) + "," + (this._y1 = +y); }, quadraticCurveTo: function(x1, y1, x, y) { this._ += "Q" + (+x1) + "," + (+y1) + "," + (this._x1 = +x) + "," + (this._y1 = +y); }, bezierCurveTo: function(x1, y1, x2, y2, x, y) { this._ += "C" + (+x1) + "," + (+y1) + "," + (+x2) + "," + (+y2) + "," + (this._x1 = +x) + "," + (this._y1 = +y); }, arcTo: function(x1, y1, x2, y2, r) { x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r; var x0 = this._x1, y0 = this._y1, x21 = x2 - x1, y21 = y2 - y1, x01 = x0 - x1, y01 = y0 - y1, l01_2 = x01 * x01 + y01 * y01; // Is the radius negative? Error. if (r < 0) throw new Error("negative radius: " + r); // Is this path empty? Move to (x1,y1). if (this._x1 === null) { this._ += "M" + (this._x1 = x1) + "," + (this._y1 = y1); } // Or, is (x1,y1) coincident with (x0,y0)? Do nothing. else if (!(l01_2 > epsilon)) {} // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear? // Equivalently, is (x1,y1) coincident with (x2,y2)? // Or, is the radius zero? Line to (x1,y1). else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) { this._ += "L" + (this._x1 = x1) + "," + (this._y1 = y1); } // Otherwise, draw an arc! else { var x20 = x2 - x0, y20 = y2 - y0, l21_2 = x21 * x21 + y21 * y21, l20_2 = x20 * x20 + y20 * y20, l21 = Math.sqrt(l21_2), l01 = Math.sqrt(l01_2), l = r * Math.tan((pi$1 - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2), t01 = l / l01, t21 = l / l21; // If the start tangent is not coincident with (x0,y0), line to. if (Math.abs(t01 - 1) > epsilon) { this._ += "L" + (x1 + t01 * x01) + "," + (y1 + t01 * y01); } this._ += "A" + r + "," + r + ",0,0," + (+(y01 * x20 > x01 * y20)) + "," + (this._x1 = x1 + t21 * x21) + "," + (this._y1 = y1 + t21 * y21); } }, arc: function(x, y, r, a0, a1, ccw) { x = +x, y = +y, r = +r; var dx = r * Math.cos(a0), dy = r * Math.sin(a0), x0 = x + dx, y0 = y + dy, cw = 1 ^ ccw, da = ccw ? a0 - a1 : a1 - a0; // Is the radius negative? Error. if (r < 0) throw new Error("negative radius: " + r); // Is this path empty? Move to (x0,y0). if (this._x1 === null) { this._ += "M" + x0 + "," + y0; } // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0). else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) { this._ += "L" + x0 + "," + y0; } // Is this arc empty? We’re done. if (!r) return; // Is this a complete circle? Draw two arcs to complete the circle. if (da > tauEpsilon) { this._ += "A" + r + "," + r + ",0,1," + cw + "," + (x - dx) + "," + (y - dy) + "A" + r + "," + r + ",0,1," + cw + "," + (this._x1 = x0) + "," + (this._y1 = y0); } // Otherwise, draw an arc! else { if (da < 0) da = da % tau$1 + tau$1; this._ += "A" + r + "," + r + ",0," + (+(da >= pi$1)) + "," + cw + "," + (this._x1 = x + r * Math.cos(a1)) + "," + (this._y1 = y + r * Math.sin(a1)); } }, rect: function(x, y, w, h) { this._ += "M" + (this._x0 = this._x1 = +x) + "," + (this._y0 = this._y1 = +y) + "h" + (+w) + "v" + (+h) + "h" + (-w) + "Z"; }, toString: function() { return this._; } }; var tree_add = function(d) { var x = +this._x.call(null, d), y = +this._y.call(null, d); return add(this.cover(x, y), x, y, d); }; function add(tree, x, y, d) { if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, x1 = tree._x1, y1 = tree._y1, xm, ym, xp, yp, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var d, i, n = data.length, x, y, xz = new Array(n), yz = new Array(n), x0 = Infinity, y0 = Infinity, x1 = -Infinity, y1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue; xz[i] = x; yz[i] = y; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; } // If there were no (valid) points, inherit the existing extent. if (x1 < x0) x0 = this._x0, x1 = this._x1; if (y1 < y0) y0 = this._y0, y1 = this._y1; // Expand the tree to cover the new points. this.cover(x0, y0).cover(x1, y1); // Add the new points. for (i = 0; i < n; ++i) { add(this, xz[i], yz[i], data[i]); } return this; } var tree_cover = function(x, y) { if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1; // If the quadtree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing quadrant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; } // Otherwise, double repeatedly to cover. else if (x0 > x || x > x1 || y0 > y || y > y1) { var z = x1 - x0, node = this._root, parent, i; switch (i = (y < (y0 + y1) / 2) << 1 | (x < (x0 + x1) / 2)) { case 0: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x1 = x0 + z, y1 = y0 + z, x > x1 || y > y1); break; } case 1: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x0 = x1 - z, y1 = y0 + z, x0 > x || y > y1); break; } case 2: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x1 = x0 + z, y0 = y1 - z, x > x1 || y0 > y); break; } case 3: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x0 = x1 - z, y0 = y1 - z, x0 > x || y0 > y); break; } } if (this._root && this._root.length) this._root = node; } // If the quadtree covers the point already, just return. else return this; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; return this; }; var tree_data = function() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; }; var tree_extent = function(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]]; }; var Quad = function(node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; }; var tree_find = function(x, y, radius) { var data, x0 = this._x0, y0 = this._y0, x1, y1, x2, y2, x3 = this._x1, y3 = this._y1, quads = [], node = this._root, q, i; if (node) quads.push(new Quad(node, x0, y0, x3, y3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius; x3 = x + radius, y3 = y + radius; radius *= radius; } while (q = quads.pop()) { // Stop searching if this quadrant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0) continue; // Bisect the current quadrant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2; quads.push( new Quad(node[3], xm, ym, x2, y2), new Quad(node[2], x1, ym, xm, y2), new Quad(node[1], xm, y1, x2, ym), new Quad(node[0], x1, y1, xm, ym) ); // Visit the closest quadrant first. if (i = (y >= ym) << 1 | (x >= xm)) { q = quads[quads.length - 1]; quads[quads.length - 1] = quads[quads.length - 1 - i]; quads[quads.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), d2 = dx * dx + dy * dy; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d; x3 = x + d, y3 = y + d; data = node.data; } } } return data; }; var tree_remove = function(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1, x, y, xm, ym, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (!(parent = node, node = node[i = bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3]) && node === (parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; }; function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } var tree_root = function() { return this._root; }; var tree_size = function() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; }; var tree_visit = function(callback) { var quads = [], q, node = this._root, child, x0, y0, x1, y1; if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); } } return this; }; var tree_visitAfter = function(callback) { var quads = [], next = [], q; if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.x1, q.y1); } return this; }; function defaultX(d) { return d[0]; } var tree_x = function(_) { return arguments.length ? (this._x = _, this) : this._x; }; function defaultY(d) { return d[1]; } var tree_y = function(_) { return arguments.length ? (this._y = _, this) : this._y; }; function quadtree(nodes, x, y) { var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Quadtree(x, y, x0, y0, x1, y1) { this._x = x; this._y = y; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; this._root = undefined; } function leaf_copy(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto = quadtree.prototype = Quadtree.prototype; treeProto.copy = function() { var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{source: node, target: copy._root = new Array(4)}]; while (node = nodes.pop()) { for (var i = 0; i < 4; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)}); else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; treeProto.y = tree_y; var slice$1 = [].slice; var noabort = {}; function Queue(size) { if (!(size >= 1)) throw new Error; this._size = size; this._call = this._error = null; this._tasks = []; this._data = []; this._waiting = this._active = this._ended = this._start = 0; // inside a synchronous task callback? } Queue.prototype = queue.prototype = { constructor: Queue, defer: function(callback) { if (typeof callback !== "function" || this._call) throw new Error; if (this._error != null) return this; var t = slice$1.call(arguments, 1); t.push(callback); ++this._waiting, this._tasks.push(t); poke(this); return this; }, abort: function() { if (this._error == null) abort(this, new Error("abort")); return this; }, await: function(callback) { if (typeof callback !== "function" || this._call) throw new Error; this._call = function(error, results) { callback.apply(null, [error].concat(results)); }; maybeNotify(this); return this; }, awaitAll: function(callback) { if (typeof callback !== "function" || this._call) throw new Error; this._call = callback; maybeNotify(this); return this; } }; function poke(q) { if (!q._start) { try { start(q); } // let the current task complete catch (e) { if (q._tasks[q._ended + q._active - 1]) abort(q, e); // task errored synchronously else if (!q._data) throw e; // await callback errored synchronously } } } function start(q) { while (q._start = q._waiting && q._active < q._size) { var i = q._ended + q._active, t = q._tasks[i], j = t.length - 1, c = t[j]; t[j] = end(q, i); --q._waiting, ++q._active; t = c.apply(null, t); if (!q._tasks[i]) continue; // task finished synchronously q._tasks[i] = t || noabort; } } function end(q, i) { return function(e, r) { if (!q._tasks[i]) return; // ignore multiple callbacks --q._active, ++q._ended; q._tasks[i] = null; if (q._error != null) return; // ignore secondary errors if (e != null) { abort(q, e); } else { q._data[i] = r; if (q._waiting) poke(q); else maybeNotify(q); } }; } function abort(q, e) { var i = q._tasks.length, t; q._error = e; // ignore active callbacks q._data = undefined; // allow gc q._waiting = NaN; // prevent starting while (--i >= 0) { if (t = q._tasks[i]) { q._tasks[i] = null; if (t.abort) { try { t.abort(); } catch (e) { /* ignore */ } } } } q._active = NaN; // allow notification maybeNotify(q); } function maybeNotify(q) { if (!q._active && q._call) { var d = q._data; q._data = undefined; // allow gc q._call(q._error, d); } } function queue(concurrency) { return new Queue(arguments.length ? +concurrency : Infinity); } var constant$1 = function(x) { return function constant() { return x; }; }; var epsilon$1 = 1e-12; var pi$2 = Math.PI; var halfPi$1 = pi$2 / 2; var tau$2 = 2 * pi$2; function arcInnerRadius(d) { return d.innerRadius; } function arcOuterRadius(d) { return d.outerRadius; } function arcStartAngle(d) { return d.startAngle; } function arcEndAngle(d) { return d.endAngle; } function arcPadAngle(d) { return d && d.padAngle; // Note: optional! } function asin(x) { return x >= 1 ? halfPi$1 : x <= -1 ? -halfPi$1 : Math.asin(x); } function intersect(x0, y0, x1, y1, x2, y2, x3, y3) { var x10 = x1 - x0, y10 = y1 - y0, x32 = x3 - x2, y32 = y3 - y2, t = (x32 * (y0 - y2) - y32 * (x0 - x2)) / (y32 * x10 - x32 * y10); return [x0 + t * x10, y0 + t * y10]; } // Compute perpendicular offset line of length rc. // http://mathworld.wolfram.com/Circle-LineIntersection.html function cornerTangents(x0, y0, x1, y1, r1, rc, cw) { var x01 = x0 - x1, y01 = y0 - y1, lo = (cw ? rc : -rc) / Math.sqrt(x01 * x01 + y01 * y01), ox = lo * y01, oy = -lo * x01, x11 = x0 + ox, y11 = y0 + oy, x10 = x1 + ox, y10 = y1 + oy, x00 = (x11 + x10) / 2, y00 = (y11 + y10) / 2, dx = x10 - x11, dy = y10 - y11, d2 = dx * dx + dy * dy, r = r1 - rc, D = x11 * y10 - x10 * y11, d = (dy < 0 ? -1 : 1) * Math.sqrt(Math.max(0, r * r * d2 - D * D)), cx0 = (D * dy - dx * d) / d2, cy0 = (-D * dx - dy * d) / d2, cx1 = (D * dy + dx * d) / d2, cy1 = (-D * dx + dy * d) / d2, dx0 = cx0 - x00, dy0 = cy0 - y00, dx1 = cx1 - x00, dy1 = cy1 - y00; // Pick the closer of the two intersection points. // TODO Is there a faster way to determine which intersection to use? if (dx0 * dx0 + dy0 * dy0 > dx1 * dx1 + dy1 * dy1) cx0 = cx1, cy0 = cy1; return { cx: cx0, cy: cy0, x01: -ox, y01: -oy, x11: cx0 * (r1 / r - 1), y11: cy0 * (r1 / r - 1) }; } var arc = function() { var innerRadius = arcInnerRadius, outerRadius = arcOuterRadius, cornerRadius = constant$1(0), padRadius = null, startAngle = arcStartAngle, endAngle = arcEndAngle, padAngle = arcPadAngle, context = null; function arc() { var buffer, r, r0 = +innerRadius.apply(this, arguments), r1 = +outerRadius.apply(this, arguments), a0 = startAngle.apply(this, arguments) - halfPi$1, a1 = endAngle.apply(this, arguments) - halfPi$1, da = Math.abs(a1 - a0), cw = a1 > a0; if (!context) context = buffer = path(); // Ensure that the outer radius is always larger than the inner radius. if (r1 < r0) r = r1, r1 = r0, r0 = r; // Is it a point? if (!(r1 > epsilon$1)) context.moveTo(0, 0); // Or is it a circle or annulus? else if (da > tau$2 - epsilon$1) { context.moveTo(r1 * Math.cos(a0), r1 * Math.sin(a0)); context.arc(0, 0, r1, a0, a1, !cw); if (r0 > epsilon$1) { context.moveTo(r0 * Math.cos(a1), r0 * Math.sin(a1)); context.arc(0, 0, r0, a1, a0, cw); } } // Or is it a circular or annular sector? else { var a01 = a0, a11 = a1, a00 = a0, a10 = a1, da0 = da, da1 = da, ap = padAngle.apply(this, arguments) / 2, rp = (ap > epsilon$1) && (padRadius ? +padRadius.apply(this, arguments) : Math.sqrt(r0 * r0 + r1 * r1)), rc = Math.min(Math.abs(r1 - r0) / 2, +cornerRadius.apply(this, arguments)), rc0 = rc, rc1 = rc, t0, t1; // Apply padding? Note that since r1 ≥ r0, da1 ≥ da0. if (rp > epsilon$1) { var p0 = asin(rp / r0 * Math.sin(ap)), p1 = asin(rp / r1 * Math.sin(ap)); if ((da0 -= p0 * 2) > epsilon$1) p0 *= (cw ? 1 : -1), a00 += p0, a10 -= p0; else da0 = 0, a00 = a10 = (a0 + a1) / 2; if ((da1 -= p1 * 2) > epsilon$1) p1 *= (cw ? 1 : -1), a01 += p1, a11 -= p1; else da1 = 0, a01 = a11 = (a0 + a1) / 2; } var x01 = r1 * Math.cos(a01), y01 = r1 * Math.sin(a01), x10 = r0 * Math.cos(a10), y10 = r0 * Math.sin(a10); // Apply rounded corners? if (rc > epsilon$1) { var x11 = r1 * Math.cos(a11), y11 = r1 * Math.sin(a11), x00 = r0 * Math.cos(a00), y00 = r0 * Math.sin(a00); // Restrict the corner radius according to the sector angle. if (da < pi$2) { var oc = da0 > epsilon$1 ? intersect(x01, y01, x00, y00, x11, y11, x10, y10) : [x10, y10], ax = x01 - oc[0], ay = y01 - oc[1], bx = x11 - oc[0], by = y11 - oc[1], kc = 1 / Math.sin(Math.acos((ax * bx + ay * by) / (Math.sqrt(ax * ax + ay * ay) * Math.sqrt(bx * bx + by * by))) / 2), lc = Math.sqrt(oc[0] * oc[0] + oc[1] * oc[1]); rc0 = Math.min(rc, (r0 - lc) / (kc - 1)); rc1 = Math.min(rc, (r1 - lc) / (kc + 1)); } } // Is the sector collapsed to a line? if (!(da1 > epsilon$1)) context.moveTo(x01, y01); // Does the sector’s outer ring have rounded corners? else if (rc1 > epsilon$1) { t0 = cornerTangents(x00, y00, x01, y01, r1, rc1, cw); t1 = cornerTangents(x11, y11, x10, y10, r1, rc1, cw); context.moveTo(t0.cx + t0.x01, t0.cy + t0.y01); // Have the corners merged? if (rc1 < rc) context.arc(t0.cx, t0.cy, rc1, Math.atan2(t0.y01, t0.x01), Math.atan2(t1.y01, t1.x01), !cw); // Otherwise, draw the two corners and the ring. else { context.arc(t0.cx, t0.cy, rc1, Math.atan2(t0.y01, t0.x01), Math.atan2(t0.y11, t0.x11), !cw); context.arc(0, 0, r1, Math.atan2(t0.cy + t0.y11, t0.cx + t0.x11), Math.atan2(t1.cy + t1.y11, t1.cx + t1.x11), !cw); context.arc(t1.cx, t1.cy, rc1, Math.atan2(t1.y11, t1.x11), Math.atan2(t1.y01, t1.x01), !cw); } } // Or is the outer ring just a circular arc? else context.moveTo(x01, y01), context.arc(0, 0, r1, a01, a11, !cw); // Is there no inner ring, and it’s a circular sector? // Or perhaps it’s an annular sector collapsed due to padding? if (!(r0 > epsilon$1) || !(da0 > epsilon$1)) context.lineTo(x10, y10); // Does the sector’s inner ring (or point) have rounded corners? else if (rc0 > epsilon$1) { t0 = cornerTangents(x10, y10, x11, y11, r0, -rc0, cw); t1 = cornerTangents(x01, y01, x00, y00, r0, -rc0, cw); context.lineTo(t0.cx + t0.x01, t0.cy + t0.y01); // Have the corners merged? if (rc0 < rc) context.arc(t0.cx, t0.cy, rc0, Math.atan2(t0.y01, t0.x01), Math.atan2(t1.y01, t1.x01), !cw); // Otherwise, draw the two corners and the ring. else { context.arc(t0.cx, t0.cy, rc0, Math.atan2(t0.y01, t0.x01), Math.atan2(t0.y11, t0.x11), !cw); context.arc(0, 0, r0, Math.atan2(t0.cy + t0.y11, t0.cx + t0.x11), Math.atan2(t1.cy + t1.y11, t1.cx + t1.x11), cw); context.arc(t1.cx, t1.cy, rc0, Math.atan2(t1.y11, t1.x11), Math.atan2(t1.y01, t1.x01), !cw); } } // Or is the inner ring just a circular arc? else context.arc(0, 0, r0, a10, a00, cw); } context.closePath(); if (buffer) return context = null, buffer + "" || null; } arc.centroid = function() { var r = (+innerRadius.apply(this, arguments) + +outerRadius.apply(this, arguments)) / 2, a = (+startAngle.apply(this, arguments) + +endAngle.apply(this