jay-code
Version:
Streamlined AI CLI orchestration engine with mathematical rigor and enterprise-grade reliability
920 lines (805 loc) ⢠27.3 kB
JavaScript
/**
* Neural Network View - Interface for neural network operations
* Handles training, prediction, pattern analysis, and model management
*/
export default class NeuralNetworkView {
constructor(container, eventBus, viewConfig) {
this.container = container;
this.eventBus = eventBus;
this.viewConfig = viewConfig;
this.componentLibrary = null;
this.models = new Map();
this.trainingJobs = new Map();
this.currentTab = 'overview';
this.isInitialized = false;
}
/**
* Initialize the neural network view
*/
async initialize() {
if (this.isInitialized) return;
// Get component library from event bus
this.eventBus.emit('component-library:get', (library) => {
this.componentLibrary = library;
});
// Setup event handlers
this.setupEventHandlers();
this.isInitialized = true;
}
/**
* Render the view with given parameters
*/
async render(params = {}) {
if (!this.isInitialized) {
await this.initialize();
}
// Clear container
if (this.container) {
this.container.innerHTML = '';
this.createNeuralNetworkInterface();
} else {
// Terminal mode
this.renderTerminalMode(params);
}
}
/**
* Create neural network interface for browser
*/
createNeuralNetworkInterface() {
// Create tab container
const tabs = [
{ label: 'š Overview', content: this.createOverviewTab() },
{ label: 'š§ Training', content: this.createTrainingTab() },
{ label: 'š® Prediction', content: this.createPredictionTab() },
{ label: 'šÆ Patterns', content: this.createPatternsTab() },
{ label: 'š¾ Models', content: this.createModelsTab() },
{ label: 'ā” Optimization', content: this.createOptimizationTab() },
];
if (this.componentLibrary) {
const tabContainer = this.componentLibrary.getComponent('TabContainer')(tabs);
this.container.appendChild(tabContainer.element);
} else {
// Fallback without component library
this.createFallbackInterface();
}
}
/**
* Create overview tab content
*/
createOverviewTab() {
return `
<div class="neural-overview">
<div class="stats-grid">
<div id="models-stat" class="stat-card">
<div class="stat-icon">š§ </div>
<div class="stat-content">
<div class="stat-value">0</div>
<div class="stat-label">Models</div>
</div>
</div>
<div id="training-stat" class="stat-card">
<div class="stat-icon">ā”</div>
<div class="stat-content">
<div class="stat-value">0</div>
<div class="stat-label">Training Jobs</div>
</div>
</div>
<div id="accuracy-stat" class="stat-card">
<div class="stat-icon">šÆ</div>
<div class="stat-content">
<div class="stat-value">--</div>
<div class="stat-label">Avg Accuracy</div>
</div>
</div>
<div id="wasm-stat" class="stat-card">
<div class="stat-icon">š</div>
<div class="stat-content">
<div class="stat-value">--</div>
<div class="stat-label">WASM Status</div>
</div>
</div>
</div>
<div class="neural-tools">
<h3>š§ Quick Actions</h3>
<div class="tool-buttons">
<button onclick="this.startQuickTrain()" class="neural-btn primary">
š§ Quick Train
</button>
<button onclick="this.checkModels()" class="neural-btn secondary">
š List Models
</button>
<button onclick="this.runPrediction()" class="neural-btn secondary">
š® Test Prediction
</button>
<button onclick="this.analyzePatterns()" class="neural-btn secondary">
šÆ Analyze Patterns
</button>
</div>
</div>
<div class="recent-activity">
<h3>š Recent Activity</h3>
<div id="activity-log" class="activity-list">
<div class="activity-item">
<span class="activity-time">--:--</span>
<span class="activity-desc">No recent activity</span>
</div>
</div>
</div>
</div>
`;
}
/**
* Create training tab content
*/
createTrainingTab() {
return `
<div class="neural-training">
<div class="training-form">
<h3>š§ Neural Network Training</h3>
<div class="form-group">
<label>Pattern Type:</label>
<select id="pattern-type">
<option value="coordination">Coordination</option>
<option value="optimization">Optimization</option>
<option value="prediction">Prediction</option>
</select>
</div>
<div class="form-group">
<label>Training Data:</label>
<textarea id="training-data" placeholder="Enter training data or file path..."></textarea>
</div>
<div class="form-group">
<label>Epochs:</label>
<input type="number" id="epochs" value="50" min="1" max="1000">
</div>
<div class="form-group">
<label>Learning Rate:</label>
<input type="number" id="learning-rate" value="0.001" step="0.001" min="0.0001" max="1">
</div>
<button onclick="this.startTraining()" class="neural-btn primary">
ā” Start Training
</button>
</div>
<div class="training-progress">
<h3>š Training Progress</h3>
<div id="training-status" class="status-display">
<div class="status-idle">No training in progress</div>
</div>
<div id="training-chart" class="chart-container">
<!-- Training progress chart will be inserted here -->
</div>
</div>
<div class="training-history">
<h3>š Training History</h3>
<div id="training-history-list" class="history-list">
<!-- Training history will be populated here -->
</div>
</div>
</div>
`;
}
/**
* Create prediction tab content
*/
createPredictionTab() {
return `
<div class="neural-prediction">
<div class="prediction-form">
<h3>š® AI Prediction</h3>
<div class="form-group">
<label>Model:</label>
<select id="prediction-model">
<option value="">Select a model...</option>
</select>
</div>
<div class="form-group">
<label>Input Data:</label>
<textarea id="prediction-input" placeholder="Enter input data for prediction..."></textarea>
</div>
<button onclick="this.runPrediction()" class="neural-btn primary">
š® Run Prediction
</button>
</div>
<div class="prediction-results">
<h3>š Prediction Results</h3>
<div id="prediction-output" class="results-display">
<div class="no-results">No predictions yet</div>
</div>
<div class="confidence-display">
<h4>šÆ Confidence Score</h4>
<div id="confidence-bar" class="confidence-bar">
<div class="confidence-fill" style="width: 0%"></div>
<span class="confidence-text">0%</span>
</div>
</div>
</div>
<div class="prediction-history">
<h3>š Recent Predictions</h3>
<div id="prediction-history-list" class="history-list">
<!-- Prediction history will be populated here -->
</div>
</div>
</div>
`;
}
/**
* Create patterns tab content
*/
createPatternsTab() {
return `
<div class="neural-patterns">
<div class="pattern-analysis">
<h3>šÆ Pattern Analysis</h3>
<div class="form-group">
<label>Analysis Type:</label>
<select id="analysis-type">
<option value="analyze">Analyze</option>
<option value="learn">Learn</option>
<option value="predict">Predict</option>
</select>
</div>
<div class="form-group">
<label>Operation:</label>
<input type="text" id="pattern-operation" placeholder="Describe the operation...">
</div>
<div class="form-group">
<label>Outcome:</label>
<input type="text" id="pattern-outcome" placeholder="Expected or actual outcome...">
</div>
<button onclick="this.analyzePattern()" class="neural-btn primary">
šÆ Analyze Pattern
</button>
</div>
<div class="pattern-results">
<h3>š Pattern Insights</h3>
<div id="pattern-insights" class="insights-display">
<div class="no-insights">No pattern analysis yet</div>
</div>
</div>
<div class="cognitive-analysis">
<h3>š§ Cognitive Analysis</h3>
<div class="form-group">
<label>Behavior to Analyze:</label>
<textarea id="behavior-input" placeholder="Describe the behavior or process to analyze..."></textarea>
</div>
<button onclick="this.analyzeCognitive()" class="neural-btn secondary">
š§ Analyze Behavior
</button>
<div id="cognitive-results" class="cognitive-display">
<!-- Cognitive analysis results will appear here -->
</div>
</div>
</div>
`;
}
/**
* Create models tab content
*/
createModelsTab() {
return `
<div class="neural-models">
<div class="model-management">
<h3>š¾ Model Management</h3>
<div class="model-actions">
<button onclick="this.loadModel()" class="neural-btn primary">
š„ Load Model
</button>
<button onclick="this.saveCurrentModel()" class="neural-btn secondary">
š¾ Save Model
</button>
<button onclick="this.createEnsemble()" class="neural-btn secondary">
š Create Ensemble
</button>
</div>
</div>
<div class="model-list">
<h3>š Available Models</h3>
<div id="models-list" class="models-grid">
<!-- Model cards will be populated here -->
</div>
</div>
<div class="model-operations">
<h3>š§ Model Operations</h3>
<div class="operation-grid">
<div class="operation-card">
<h4>šļø Compress Model</h4>
<p>Reduce model size for faster inference</p>
<button onclick="this.compressModel()" class="neural-btn">Compress</button>
</div>
<div class="operation-card">
<h4>š Transfer Learning</h4>
<p>Adapt model to new domain</p>
<button onclick="this.transferLearn()" class="neural-btn">Transfer</button>
</div>
<div class="operation-card">
<h4>š Model Explain</h4>
<p>Get AI explainability insights</p>
<button onclick="this.explainModel()" class="neural-btn">Explain</button>
</div>
</div>
</div>
</div>
`;
}
/**
* Create optimization tab content
*/
createOptimizationTab() {
return `
<div class="neural-optimization">
<div class="wasm-optimization">
<h3>š WASM SIMD Optimization</h3>
<div class="optimization-status">
<div id="wasm-status" class="status-card">
<div class="status-icon">š</div>
<div class="status-text">Checking WASM status...</div>
</div>
</div>
<div class="optimization-controls">
<button onclick="this.optimizeWasm()" class="neural-btn primary">
ā” Optimize WASM
</button>
<button onclick="this.checkWasmStatus()" class="neural-btn secondary">
š Check Status
</button>
</div>
</div>
<div class="inference-optimization">
<h3>š® Inference Optimization</h3>
<div class="form-group">
<label>Model for Inference:</label>
<select id="inference-model">
<option value="">Select model...</option>
</select>
</div>
<div class="form-group">
<label>Test Data:</label>
<textarea id="inference-data" placeholder="Enter test data array..."></textarea>
</div>
<button onclick="this.runInference()" class="neural-btn primary">
š® Run Inference
</button>
<div id="inference-results" class="inference-display">
<!-- Inference results will appear here -->
</div>
</div>
<div class="performance-metrics">
<h3>š Performance Metrics</h3>
<div class="metrics-grid">
<div class="metric-card">
<div class="metric-label">Inference Speed</div>
<div id="inference-speed" class="metric-value">-- ms</div>
</div>
<div class="metric-card">
<div class="metric-label">Memory Usage</div>
<div id="memory-usage" class="metric-value">-- MB</div>
</div>
<div class="metric-card">
<div class="metric-label">WASM Speedup</div>
<div id="wasm-speedup" class="metric-value">--x</div>
</div>
</div>
</div>
</div>
`;
}
/**
* Create fallback interface without component library
*/
createFallbackInterface() {
this.container.innerHTML = `
<div class="neural-network-fallback">
<h2>š§ Neural Network Operations</h2>
<p>Advanced neural network interface with 15 integrated tools</p>
<div class="tool-sections">
<div class="tool-section">
<h3>š§ Training & Models</h3>
<button onclick="this.quickAction('neural_train')">Train Neural Network</button>
<button onclick="this.quickAction('neural_status')">Check Status</button>
<button onclick="this.quickAction('model_save')">Save Model</button>
<button onclick="this.quickAction('model_load')">Load Model</button>
</div>
<div class="tool-section">
<h3>š® Prediction & Analysis</h3>
<button onclick="this.quickAction('neural_predict')">Make Prediction</button>
<button onclick="this.quickAction('neural_patterns')">Analyze Patterns</button>
<button onclick="this.quickAction('cognitive_analyze')">Cognitive Analysis</button>
<button onclick="this.quickAction('pattern_recognize')">Pattern Recognition</button>
</div>
<div class="tool-section">
<h3>ā” Optimization</h3>
<button onclick="this.quickAction('wasm_optimize')">WASM Optimization</button>
<button onclick="this.quickAction('neural_compress')">Compress Model</button>
<button onclick="this.quickAction('inference_run')">Run Inference</button>
<button onclick="this.quickAction('neural_explain')">Explain Model</button>
</div>
</div>
<div id="neural-output" class="output-area">
<h3>š Output</h3>
<pre id="output-content">Ready for neural operations...</pre>
</div>
</div>
`;
}
/**
* Render terminal mode
*/
renderTerminalMode(params) {
console.log('\nš§ Neural Network Operations');
console.log('ā'.repeat(50));
console.log('Available Tools (15):');
console.log(' š§ neural_train - Train neural patterns');
console.log(' š® neural_predict - Make AI predictions');
console.log(' š neural_status - Check model status');
console.log(' šÆ neural_patterns - Analyze patterns');
console.log(' š¾ model_save - Save trained models');
console.log(' š„ model_load - Load models');
console.log(' šÆ pattern_recognize- Pattern recognition');
console.log(' š§ cognitive_analyze- Behavior analysis');
console.log(' š learning_adapt - Adaptive learning');
console.log(' šļø neural_compress - Model compression');
console.log(' š ensemble_create - Model ensembles');
console.log(' š transfer_learn - Transfer learning');
console.log(' š neural_explain - AI explainability');
console.log(' š wasm_optimize - WASM optimization');
console.log(' š® inference_run - Neural inference');
console.log('ā'.repeat(50));
if (params.tool) {
console.log(`\nš§ Executing: ${params.tool}`);
this.quickAction(params.tool, params);
}
}
/**
* Quick action handler
*/
async quickAction(toolName, params = {}) {
try {
console.log(`š§ Executing ${toolName}...`);
// Emit tool execution event
this.eventBus.emit('tool:execute', {
tool: toolName,
params: params,
source: 'neural-view',
});
// Handle specific tool actions
switch (toolName) {
case 'neural_train':
await this.handleTraining(params);
break;
case 'neural_predict':
await this.handlePrediction(params);
break;
case 'neural_patterns':
await this.handlePatternAnalysis(params);
break;
default:
console.log(`Tool ${toolName} executed`);
}
} catch (error) {
console.error(`ā Error executing ${toolName}:`, error);
}
}
/**
* Handle training operations
*/
async handleTraining(params) {
const trainingParams = {
pattern_type: params.pattern_type || 'coordination',
training_data: params.training_data || 'sample_data',
epochs: params.epochs || 50,
};
console.log('š§ Training neural network with parameters:', trainingParams);
// Update UI if in browser mode
if (this.container) {
const statusEl = document.getElementById('training-status');
if (statusEl) {
statusEl.innerHTML = '<div class="status-training">Training in progress...</div>';
}
}
}
/**
* Handle prediction operations
*/
async handlePrediction(params) {
const predictionParams = {
modelId: params.modelId || 'default_model',
input: params.input || 'sample_input',
};
console.log('š® Running prediction with parameters:', predictionParams);
// Update UI if in browser mode
if (this.container) {
const outputEl = document.getElementById('prediction-output');
if (outputEl) {
outputEl.innerHTML = '<div class="prediction-result">Prediction in progress...</div>';
}
}
}
/**
* Handle pattern analysis
*/
async handlePatternAnalysis(params) {
const analysisParams = {
action: params.action || 'analyze',
operation: params.operation || 'sample_operation',
outcome: params.outcome || 'sample_outcome',
};
console.log('šÆ Analyzing patterns with parameters:', analysisParams);
// Update UI if in browser mode
if (this.container) {
const insightsEl = document.getElementById('pattern-insights');
if (insightsEl) {
insightsEl.innerHTML = '<div class="analysis-result">Pattern analysis in progress...</div>';
}
}
}
/**
* Setup event handlers
*/
setupEventHandlers() {
// Listen for tool results
this.eventBus.on('tool:executed', (data) => {
if (data.source === 'neural-view') {
this.handleToolResult(data);
}
});
// Listen for real-time updates
this.eventBus.on('ui:real-time:update', () => {
this.updateStats();
});
// Listen for theme changes
this.eventBus.on('ui:theme:changed', (theme) => {
this.updateTheme(theme);
});
}
/**
* Handle tool execution results
*/
handleToolResult(data) {
console.log(`ā
Tool ${data.tool} completed:`, data.result);
// Update UI based on result
if (this.container) {
this.updateUIWithResult(data.tool, data.result);
}
}
/**
* Update UI with tool results
*/
updateUIWithResult(toolName, result) {
// Update based on specific tool
switch (toolName) {
case 'neural_train':
this.updateTrainingResults(result);
break;
case 'neural_predict':
this.updatePredictionResults(result);
break;
case 'neural_patterns':
this.updatePatternResults(result);
break;
}
}
/**
* Update training results in UI
*/
updateTrainingResults(result) {
const statusEl = document.getElementById('training-status');
if (statusEl) {
statusEl.innerHTML = `
<div class="status-complete">
ā
Training completed!
<div class="training-metrics">
<div>Epochs: ${result.epochs}</div>
<div>Accuracy: ${result.accuracy}</div>
<div>Loss: ${result.loss}</div>
</div>
</div>
`;
}
}
/**
* Update prediction results in UI
*/
updatePredictionResults(result) {
const outputEl = document.getElementById('prediction-output');
if (outputEl) {
outputEl.innerHTML = `
<div class="prediction-complete">
<div class="prediction-value">${result.prediction}</div>
<div class="prediction-confidence">Confidence: ${result.confidence}</div>
</div>
`;
}
// Update confidence bar
const confidenceBar = document.querySelector('.confidence-fill');
const confidenceText = document.querySelector('.confidence-text');
if (confidenceBar && confidenceText) {
const confidence = Math.round(result.confidence * 100);
confidenceBar.style.width = `${confidence}%`;
confidenceText.textContent = `${confidence}%`;
}
}
/**
* Update pattern analysis results
*/
updatePatternResults(result) {
const insightsEl = document.getElementById('pattern-insights');
if (insightsEl) {
insightsEl.innerHTML = `
<div class="insights-complete">
<div class="insights-title">Pattern Analysis Complete</div>
<div class="insights-content">${result.insights}</div>
<div class="patterns-found">
Patterns: ${result.patterns ? result.patterns.join(', ') : 'None'}
</div>
</div>
`;
}
}
/**
* Update statistics
*/
updateStats() {
// Update model count
const modelsStatEl = document.getElementById('models-stat');
if (modelsStatEl) {
const valueEl = modelsStatEl.querySelector('.stat-value');
if (valueEl) valueEl.textContent = this.models.size;
}
// Update training jobs count
const trainingStatEl = document.getElementById('training-stat');
if (trainingStatEl) {
const valueEl = trainingStatEl.querySelector('.stat-value');
if (valueEl) valueEl.textContent = this.trainingJobs.size;
}
}
/**
* Update theme
*/
updateTheme(theme) {
if (this.container) {
this.container.classList.remove('theme-dark', 'theme-light');
this.container.classList.add(`theme-${theme}`);
}
}
/**
* Destroy view and cleanup
*/
destroy() {
// Clear any intervals or timeouts
// Remove event listeners
// Clean up resources
console.log('š§ Neural Network View destroyed');
}
}
// Add neural network specific styles
if (typeof document !== 'undefined') {
const neuralStyles = document.createElement('style');
neuralStyles.textContent = `
.neural-overview {
padding: 20px;
}
.stats-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 16px;
margin-bottom: 24px;
}
.stat-card {
display: flex;
align-items: center;
background: #2a2a2a;
padding: 16px;
border-radius: 8px;
border: 1px solid #444;
}
.stat-icon {
font-size: 24px;
margin-right: 12px;
}
.stat-value {
font-size: 24px;
font-weight: bold;
color: #00d4ff;
}
.stat-label {
color: #888;
font-size: 14px;
}
.neural-tools {
margin: 24px 0;
}
.tool-buttons {
display: flex;
gap: 12px;
flex-wrap: wrap;
}
.neural-btn {
padding: 10px 16px;
border: none;
border-radius: 6px;
cursor: pointer;
font-weight: 500;
transition: all 0.2s ease;
}
.neural-btn.primary {
background: #00d4ff;
color: #000;
}
.neural-btn.primary:hover {
background: #00b8e6;
}
.neural-btn.secondary {
background: #444;
color: #fff;
}
.neural-btn.secondary:hover {
background: #555;
}
.form-group {
margin-bottom: 16px;
}
.form-group label {
display: block;
margin-bottom: 4px;
color: #fff;
font-weight: 500;
}
.form-group input,
.form-group select,
.form-group textarea {
width: 100%;
padding: 8px 12px;
background: #1a1a1a;
border: 1px solid #444;
border-radius: 4px;
color: #fff;
}
.form-group textarea {
height: 100px;
resize: vertical;
}
.confidence-bar {
position: relative;
background: #1a1a1a;
border: 1px solid #444;
border-radius: 4px;
height: 24px;
overflow: hidden;
}
.confidence-fill {
height: 100%;
background: linear-gradient(90deg, #00d4ff, #0099cc);
transition: width 0.3s ease;
}
.confidence-text {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
color: #fff;
font-size: 12px;
font-weight: bold;
}
.operation-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 16px;
}
.operation-card {
background: #2a2a2a;
border: 1px solid #444;
border-radius: 8px;
padding: 16px;
}
.operation-card h4 {
margin: 0 0 8px 0;
color: #00d4ff;
}
.operation-card p {
margin: 0 0 12px 0;
color: #888;
font-size: 14px;
}
`;
document.head.appendChild(neuralStyles);
}