UNPKG

jay-code

Version:

Streamlined AI CLI orchestration engine with mathematical rigor and enterprise-grade reliability

920 lines (805 loc) • 27.3 kB
/** * Neural Network View - Interface for neural network operations * Handles training, prediction, pattern analysis, and model management */ export default class NeuralNetworkView { constructor(container, eventBus, viewConfig) { this.container = container; this.eventBus = eventBus; this.viewConfig = viewConfig; this.componentLibrary = null; this.models = new Map(); this.trainingJobs = new Map(); this.currentTab = 'overview'; this.isInitialized = false; } /** * Initialize the neural network view */ async initialize() { if (this.isInitialized) return; // Get component library from event bus this.eventBus.emit('component-library:get', (library) => { this.componentLibrary = library; }); // Setup event handlers this.setupEventHandlers(); this.isInitialized = true; } /** * Render the view with given parameters */ async render(params = {}) { if (!this.isInitialized) { await this.initialize(); } // Clear container if (this.container) { this.container.innerHTML = ''; this.createNeuralNetworkInterface(); } else { // Terminal mode this.renderTerminalMode(params); } } /** * Create neural network interface for browser */ createNeuralNetworkInterface() { // Create tab container const tabs = [ { label: 'šŸ“Š Overview', content: this.createOverviewTab() }, { label: '🧠 Training', content: this.createTrainingTab() }, { label: 'šŸ”® Prediction', content: this.createPredictionTab() }, { label: 'šŸŽÆ Patterns', content: this.createPatternsTab() }, { label: 'šŸ’¾ Models', content: this.createModelsTab() }, { label: '⚔ Optimization', content: this.createOptimizationTab() }, ]; if (this.componentLibrary) { const tabContainer = this.componentLibrary.getComponent('TabContainer')(tabs); this.container.appendChild(tabContainer.element); } else { // Fallback without component library this.createFallbackInterface(); } } /** * Create overview tab content */ createOverviewTab() { return ` <div class="neural-overview"> <div class="stats-grid"> <div id="models-stat" class="stat-card"> <div class="stat-icon">🧠</div> <div class="stat-content"> <div class="stat-value">0</div> <div class="stat-label">Models</div> </div> </div> <div id="training-stat" class="stat-card"> <div class="stat-icon">⚔</div> <div class="stat-content"> <div class="stat-value">0</div> <div class="stat-label">Training Jobs</div> </div> </div> <div id="accuracy-stat" class="stat-card"> <div class="stat-icon">šŸŽÆ</div> <div class="stat-content"> <div class="stat-value">--</div> <div class="stat-label">Avg Accuracy</div> </div> </div> <div id="wasm-stat" class="stat-card"> <div class="stat-icon">šŸš€</div> <div class="stat-content"> <div class="stat-value">--</div> <div class="stat-label">WASM Status</div> </div> </div> </div> <div class="neural-tools"> <h3>šŸ”§ Quick Actions</h3> <div class="tool-buttons"> <button onclick="this.startQuickTrain()" class="neural-btn primary"> 🧠 Quick Train </button> <button onclick="this.checkModels()" class="neural-btn secondary"> šŸ“‹ List Models </button> <button onclick="this.runPrediction()" class="neural-btn secondary"> šŸ”® Test Prediction </button> <button onclick="this.analyzePatterns()" class="neural-btn secondary"> šŸŽÆ Analyze Patterns </button> </div> </div> <div class="recent-activity"> <h3>šŸ“ˆ Recent Activity</h3> <div id="activity-log" class="activity-list"> <div class="activity-item"> <span class="activity-time">--:--</span> <span class="activity-desc">No recent activity</span> </div> </div> </div> </div> `; } /** * Create training tab content */ createTrainingTab() { return ` <div class="neural-training"> <div class="training-form"> <h3>🧠 Neural Network Training</h3> <div class="form-group"> <label>Pattern Type:</label> <select id="pattern-type"> <option value="coordination">Coordination</option> <option value="optimization">Optimization</option> <option value="prediction">Prediction</option> </select> </div> <div class="form-group"> <label>Training Data:</label> <textarea id="training-data" placeholder="Enter training data or file path..."></textarea> </div> <div class="form-group"> <label>Epochs:</label> <input type="number" id="epochs" value="50" min="1" max="1000"> </div> <div class="form-group"> <label>Learning Rate:</label> <input type="number" id="learning-rate" value="0.001" step="0.001" min="0.0001" max="1"> </div> <button onclick="this.startTraining()" class="neural-btn primary"> ⚔ Start Training </button> </div> <div class="training-progress"> <h3>šŸ“Š Training Progress</h3> <div id="training-status" class="status-display"> <div class="status-idle">No training in progress</div> </div> <div id="training-chart" class="chart-container"> <!-- Training progress chart will be inserted here --> </div> </div> <div class="training-history"> <h3>šŸ“‹ Training History</h3> <div id="training-history-list" class="history-list"> <!-- Training history will be populated here --> </div> </div> </div> `; } /** * Create prediction tab content */ createPredictionTab() { return ` <div class="neural-prediction"> <div class="prediction-form"> <h3>šŸ”® AI Prediction</h3> <div class="form-group"> <label>Model:</label> <select id="prediction-model"> <option value="">Select a model...</option> </select> </div> <div class="form-group"> <label>Input Data:</label> <textarea id="prediction-input" placeholder="Enter input data for prediction..."></textarea> </div> <button onclick="this.runPrediction()" class="neural-btn primary"> šŸ”® Run Prediction </button> </div> <div class="prediction-results"> <h3>šŸ“Š Prediction Results</h3> <div id="prediction-output" class="results-display"> <div class="no-results">No predictions yet</div> </div> <div class="confidence-display"> <h4>šŸŽÆ Confidence Score</h4> <div id="confidence-bar" class="confidence-bar"> <div class="confidence-fill" style="width: 0%"></div> <span class="confidence-text">0%</span> </div> </div> </div> <div class="prediction-history"> <h3>šŸ“‹ Recent Predictions</h3> <div id="prediction-history-list" class="history-list"> <!-- Prediction history will be populated here --> </div> </div> </div> `; } /** * Create patterns tab content */ createPatternsTab() { return ` <div class="neural-patterns"> <div class="pattern-analysis"> <h3>šŸŽÆ Pattern Analysis</h3> <div class="form-group"> <label>Analysis Type:</label> <select id="analysis-type"> <option value="analyze">Analyze</option> <option value="learn">Learn</option> <option value="predict">Predict</option> </select> </div> <div class="form-group"> <label>Operation:</label> <input type="text" id="pattern-operation" placeholder="Describe the operation..."> </div> <div class="form-group"> <label>Outcome:</label> <input type="text" id="pattern-outcome" placeholder="Expected or actual outcome..."> </div> <button onclick="this.analyzePattern()" class="neural-btn primary"> šŸŽÆ Analyze Pattern </button> </div> <div class="pattern-results"> <h3>šŸ“Š Pattern Insights</h3> <div id="pattern-insights" class="insights-display"> <div class="no-insights">No pattern analysis yet</div> </div> </div> <div class="cognitive-analysis"> <h3>🧠 Cognitive Analysis</h3> <div class="form-group"> <label>Behavior to Analyze:</label> <textarea id="behavior-input" placeholder="Describe the behavior or process to analyze..."></textarea> </div> <button onclick="this.analyzeCognitive()" class="neural-btn secondary"> 🧠 Analyze Behavior </button> <div id="cognitive-results" class="cognitive-display"> <!-- Cognitive analysis results will appear here --> </div> </div> </div> `; } /** * Create models tab content */ createModelsTab() { return ` <div class="neural-models"> <div class="model-management"> <h3>šŸ’¾ Model Management</h3> <div class="model-actions"> <button onclick="this.loadModel()" class="neural-btn primary"> šŸ“„ Load Model </button> <button onclick="this.saveCurrentModel()" class="neural-btn secondary"> šŸ’¾ Save Model </button> <button onclick="this.createEnsemble()" class="neural-btn secondary"> šŸ”— Create Ensemble </button> </div> </div> <div class="model-list"> <h3>šŸ“‹ Available Models</h3> <div id="models-list" class="models-grid"> <!-- Model cards will be populated here --> </div> </div> <div class="model-operations"> <h3>šŸ”§ Model Operations</h3> <div class="operation-grid"> <div class="operation-card"> <h4>šŸ—œļø Compress Model</h4> <p>Reduce model size for faster inference</p> <button onclick="this.compressModel()" class="neural-btn">Compress</button> </div> <div class="operation-card"> <h4>šŸ”„ Transfer Learning</h4> <p>Adapt model to new domain</p> <button onclick="this.transferLearn()" class="neural-btn">Transfer</button> </div> <div class="operation-card"> <h4>šŸ“Š Model Explain</h4> <p>Get AI explainability insights</p> <button onclick="this.explainModel()" class="neural-btn">Explain</button> </div> </div> </div> </div> `; } /** * Create optimization tab content */ createOptimizationTab() { return ` <div class="neural-optimization"> <div class="wasm-optimization"> <h3>šŸš€ WASM SIMD Optimization</h3> <div class="optimization-status"> <div id="wasm-status" class="status-card"> <div class="status-icon">šŸš€</div> <div class="status-text">Checking WASM status...</div> </div> </div> <div class="optimization-controls"> <button onclick="this.optimizeWasm()" class="neural-btn primary"> ⚔ Optimize WASM </button> <button onclick="this.checkWasmStatus()" class="neural-btn secondary"> šŸ“Š Check Status </button> </div> </div> <div class="inference-optimization"> <h3>šŸ”® Inference Optimization</h3> <div class="form-group"> <label>Model for Inference:</label> <select id="inference-model"> <option value="">Select model...</option> </select> </div> <div class="form-group"> <label>Test Data:</label> <textarea id="inference-data" placeholder="Enter test data array..."></textarea> </div> <button onclick="this.runInference()" class="neural-btn primary"> šŸ”® Run Inference </button> <div id="inference-results" class="inference-display"> <!-- Inference results will appear here --> </div> </div> <div class="performance-metrics"> <h3>šŸ“ˆ Performance Metrics</h3> <div class="metrics-grid"> <div class="metric-card"> <div class="metric-label">Inference Speed</div> <div id="inference-speed" class="metric-value">-- ms</div> </div> <div class="metric-card"> <div class="metric-label">Memory Usage</div> <div id="memory-usage" class="metric-value">-- MB</div> </div> <div class="metric-card"> <div class="metric-label">WASM Speedup</div> <div id="wasm-speedup" class="metric-value">--x</div> </div> </div> </div> </div> `; } /** * Create fallback interface without component library */ createFallbackInterface() { this.container.innerHTML = ` <div class="neural-network-fallback"> <h2>🧠 Neural Network Operations</h2> <p>Advanced neural network interface with 15 integrated tools</p> <div class="tool-sections"> <div class="tool-section"> <h3>🧠 Training & Models</h3> <button onclick="this.quickAction('neural_train')">Train Neural Network</button> <button onclick="this.quickAction('neural_status')">Check Status</button> <button onclick="this.quickAction('model_save')">Save Model</button> <button onclick="this.quickAction('model_load')">Load Model</button> </div> <div class="tool-section"> <h3>šŸ”® Prediction & Analysis</h3> <button onclick="this.quickAction('neural_predict')">Make Prediction</button> <button onclick="this.quickAction('neural_patterns')">Analyze Patterns</button> <button onclick="this.quickAction('cognitive_analyze')">Cognitive Analysis</button> <button onclick="this.quickAction('pattern_recognize')">Pattern Recognition</button> </div> <div class="tool-section"> <h3>⚔ Optimization</h3> <button onclick="this.quickAction('wasm_optimize')">WASM Optimization</button> <button onclick="this.quickAction('neural_compress')">Compress Model</button> <button onclick="this.quickAction('inference_run')">Run Inference</button> <button onclick="this.quickAction('neural_explain')">Explain Model</button> </div> </div> <div id="neural-output" class="output-area"> <h3>šŸ“Š Output</h3> <pre id="output-content">Ready for neural operations...</pre> </div> </div> `; } /** * Render terminal mode */ renderTerminalMode(params) { console.log('\n🧠 Neural Network Operations'); console.log('═'.repeat(50)); console.log('Available Tools (15):'); console.log(' 🧠 neural_train - Train neural patterns'); console.log(' šŸ”® neural_predict - Make AI predictions'); console.log(' šŸ“Š neural_status - Check model status'); console.log(' šŸŽÆ neural_patterns - Analyze patterns'); console.log(' šŸ’¾ model_save - Save trained models'); console.log(' šŸ“„ model_load - Load models'); console.log(' šŸŽÆ pattern_recognize- Pattern recognition'); console.log(' 🧠 cognitive_analyze- Behavior analysis'); console.log(' šŸ”„ learning_adapt - Adaptive learning'); console.log(' šŸ—œļø neural_compress - Model compression'); console.log(' šŸ”— ensemble_create - Model ensembles'); console.log(' šŸ”„ transfer_learn - Transfer learning'); console.log(' šŸ“Š neural_explain - AI explainability'); console.log(' šŸš€ wasm_optimize - WASM optimization'); console.log(' šŸ”® inference_run - Neural inference'); console.log('═'.repeat(50)); if (params.tool) { console.log(`\nšŸ”§ Executing: ${params.tool}`); this.quickAction(params.tool, params); } } /** * Quick action handler */ async quickAction(toolName, params = {}) { try { console.log(`šŸ”§ Executing ${toolName}...`); // Emit tool execution event this.eventBus.emit('tool:execute', { tool: toolName, params: params, source: 'neural-view', }); // Handle specific tool actions switch (toolName) { case 'neural_train': await this.handleTraining(params); break; case 'neural_predict': await this.handlePrediction(params); break; case 'neural_patterns': await this.handlePatternAnalysis(params); break; default: console.log(`Tool ${toolName} executed`); } } catch (error) { console.error(`āŒ Error executing ${toolName}:`, error); } } /** * Handle training operations */ async handleTraining(params) { const trainingParams = { pattern_type: params.pattern_type || 'coordination', training_data: params.training_data || 'sample_data', epochs: params.epochs || 50, }; console.log('🧠 Training neural network with parameters:', trainingParams); // Update UI if in browser mode if (this.container) { const statusEl = document.getElementById('training-status'); if (statusEl) { statusEl.innerHTML = '<div class="status-training">Training in progress...</div>'; } } } /** * Handle prediction operations */ async handlePrediction(params) { const predictionParams = { modelId: params.modelId || 'default_model', input: params.input || 'sample_input', }; console.log('šŸ”® Running prediction with parameters:', predictionParams); // Update UI if in browser mode if (this.container) { const outputEl = document.getElementById('prediction-output'); if (outputEl) { outputEl.innerHTML = '<div class="prediction-result">Prediction in progress...</div>'; } } } /** * Handle pattern analysis */ async handlePatternAnalysis(params) { const analysisParams = { action: params.action || 'analyze', operation: params.operation || 'sample_operation', outcome: params.outcome || 'sample_outcome', }; console.log('šŸŽÆ Analyzing patterns with parameters:', analysisParams); // Update UI if in browser mode if (this.container) { const insightsEl = document.getElementById('pattern-insights'); if (insightsEl) { insightsEl.innerHTML = '<div class="analysis-result">Pattern analysis in progress...</div>'; } } } /** * Setup event handlers */ setupEventHandlers() { // Listen for tool results this.eventBus.on('tool:executed', (data) => { if (data.source === 'neural-view') { this.handleToolResult(data); } }); // Listen for real-time updates this.eventBus.on('ui:real-time:update', () => { this.updateStats(); }); // Listen for theme changes this.eventBus.on('ui:theme:changed', (theme) => { this.updateTheme(theme); }); } /** * Handle tool execution results */ handleToolResult(data) { console.log(`āœ… Tool ${data.tool} completed:`, data.result); // Update UI based on result if (this.container) { this.updateUIWithResult(data.tool, data.result); } } /** * Update UI with tool results */ updateUIWithResult(toolName, result) { // Update based on specific tool switch (toolName) { case 'neural_train': this.updateTrainingResults(result); break; case 'neural_predict': this.updatePredictionResults(result); break; case 'neural_patterns': this.updatePatternResults(result); break; } } /** * Update training results in UI */ updateTrainingResults(result) { const statusEl = document.getElementById('training-status'); if (statusEl) { statusEl.innerHTML = ` <div class="status-complete"> āœ… Training completed! <div class="training-metrics"> <div>Epochs: ${result.epochs}</div> <div>Accuracy: ${result.accuracy}</div> <div>Loss: ${result.loss}</div> </div> </div> `; } } /** * Update prediction results in UI */ updatePredictionResults(result) { const outputEl = document.getElementById('prediction-output'); if (outputEl) { outputEl.innerHTML = ` <div class="prediction-complete"> <div class="prediction-value">${result.prediction}</div> <div class="prediction-confidence">Confidence: ${result.confidence}</div> </div> `; } // Update confidence bar const confidenceBar = document.querySelector('.confidence-fill'); const confidenceText = document.querySelector('.confidence-text'); if (confidenceBar && confidenceText) { const confidence = Math.round(result.confidence * 100); confidenceBar.style.width = `${confidence}%`; confidenceText.textContent = `${confidence}%`; } } /** * Update pattern analysis results */ updatePatternResults(result) { const insightsEl = document.getElementById('pattern-insights'); if (insightsEl) { insightsEl.innerHTML = ` <div class="insights-complete"> <div class="insights-title">Pattern Analysis Complete</div> <div class="insights-content">${result.insights}</div> <div class="patterns-found"> Patterns: ${result.patterns ? result.patterns.join(', ') : 'None'} </div> </div> `; } } /** * Update statistics */ updateStats() { // Update model count const modelsStatEl = document.getElementById('models-stat'); if (modelsStatEl) { const valueEl = modelsStatEl.querySelector('.stat-value'); if (valueEl) valueEl.textContent = this.models.size; } // Update training jobs count const trainingStatEl = document.getElementById('training-stat'); if (trainingStatEl) { const valueEl = trainingStatEl.querySelector('.stat-value'); if (valueEl) valueEl.textContent = this.trainingJobs.size; } } /** * Update theme */ updateTheme(theme) { if (this.container) { this.container.classList.remove('theme-dark', 'theme-light'); this.container.classList.add(`theme-${theme}`); } } /** * Destroy view and cleanup */ destroy() { // Clear any intervals or timeouts // Remove event listeners // Clean up resources console.log('🧠 Neural Network View destroyed'); } } // Add neural network specific styles if (typeof document !== 'undefined') { const neuralStyles = document.createElement('style'); neuralStyles.textContent = ` .neural-overview { padding: 20px; } .stats-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 16px; margin-bottom: 24px; } .stat-card { display: flex; align-items: center; background: #2a2a2a; padding: 16px; border-radius: 8px; border: 1px solid #444; } .stat-icon { font-size: 24px; margin-right: 12px; } .stat-value { font-size: 24px; font-weight: bold; color: #00d4ff; } .stat-label { color: #888; font-size: 14px; } .neural-tools { margin: 24px 0; } .tool-buttons { display: flex; gap: 12px; flex-wrap: wrap; } .neural-btn { padding: 10px 16px; border: none; border-radius: 6px; cursor: pointer; font-weight: 500; transition: all 0.2s ease; } .neural-btn.primary { background: #00d4ff; color: #000; } .neural-btn.primary:hover { background: #00b8e6; } .neural-btn.secondary { background: #444; color: #fff; } .neural-btn.secondary:hover { background: #555; } .form-group { margin-bottom: 16px; } .form-group label { display: block; margin-bottom: 4px; color: #fff; font-weight: 500; } .form-group input, .form-group select, .form-group textarea { width: 100%; padding: 8px 12px; background: #1a1a1a; border: 1px solid #444; border-radius: 4px; color: #fff; } .form-group textarea { height: 100px; resize: vertical; } .confidence-bar { position: relative; background: #1a1a1a; border: 1px solid #444; border-radius: 4px; height: 24px; overflow: hidden; } .confidence-fill { height: 100%; background: linear-gradient(90deg, #00d4ff, #0099cc); transition: width 0.3s ease; } .confidence-text { position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); color: #fff; font-size: 12px; font-weight: bold; } .operation-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 16px; } .operation-card { background: #2a2a2a; border: 1px solid #444; border-radius: 8px; padding: 16px; } .operation-card h4 { margin: 0 0 8px 0; color: #00d4ff; } .operation-card p { margin: 0 0 12px 0; color: #888; font-size: 14px; } `; document.head.appendChild(neuralStyles); }