UNPKG

jay-code

Version:

Streamlined AI CLI orchestration engine with mathematical rigor and enterprise-grade reliability

827 lines (711 loc) 21.1 kB
/** * Performance optimization hooks for agentic-flow * * Tracks metrics, identifies bottlenecks, and provides * optimization suggestions based on provider performance. */ import { agenticHookManager } from './hook-manager.js'; import type { AgenticHookContext, HookHandlerResult, PerformanceHookPayload, PerformanceMetric, BottleneckAnalysis, OptimizationSuggestion, SideEffect, } from './types.js'; // ===== Performance Metric Hook ===== export const performanceMetricHook = { id: 'agentic-performance-metric', type: 'performance-metric' as const, priority: 100, handler: async ( payload: PerformanceHookPayload, context: AgenticHookContext ): Promise<HookHandlerResult> => { const { metric, value, unit, threshold } = payload; const sideEffects: SideEffect[] = []; // Store metric const metricData: PerformanceMetric = { name: metric, value, unit, timestamp: Date.now(), tags: extractTags(payload.context), }; context.performance.metrics.set(metric, metricData); // Check threshold violations if (threshold !== undefined) { const violated = checkThreshold(value, threshold, payload.context); if (violated) { sideEffects.push({ type: 'notification', action: 'emit', data: { event: 'performance:threshold:violated', data: { metric, value, threshold, unit, }, }, }); // Generate optimization suggestion const suggestion = await generateOptimizationSuggestion( metric, value, threshold, context ); if (suggestion) { context.performance.optimizations.push(suggestion); sideEffects.push({ type: 'log', action: 'write', data: { level: 'info', message: 'Optimization suggestion generated', data: suggestion, }, }); } } } // Update rolling averages await updateRollingAverages(metric, value, context); // Detect anomalies const anomaly = await detectAnomaly(metric, value, context); if (anomaly) { sideEffects.push({ type: 'notification', action: 'emit', data: { event: 'performance:anomaly:detected', data: { metric, value, anomaly }, }, }); } return { continue: true, sideEffects, }; }, }; // ===== Performance Bottleneck Hook ===== export const performanceBottleneckHook = { id: 'agentic-performance-bottleneck', type: 'performance-bottleneck' as const, priority: 90, handler: async ( payload: PerformanceHookPayload, context: AgenticHookContext ): Promise<HookHandlerResult> => { const { bottleneck } = payload; if (!bottleneck) { return { continue: true }; } const sideEffects: SideEffect[] = []; // Analyze bottleneck severity const analysis: BottleneckAnalysis = { component: bottleneck.location, severity: mapSeverity(bottleneck.severity), impact: bottleneck.severity / 10, // Normalize to 0-1 suggestions: bottleneck.suggestions, }; context.performance.bottlenecks.push(analysis); // Store for historical analysis sideEffects.push({ type: 'memory', action: 'store', data: { key: `bottleneck:${analysis.component}:${Date.now()}`, value: analysis, ttl: 86400, // 24 hours }, }); // Check for recurring bottlenecks const recurrence = await checkBottleneckRecurrence( analysis.component, context ); if (recurrence.count > 3) { // Recurring bottleneck - escalate sideEffects.push({ type: 'notification', action: 'emit', data: { event: 'performance:bottleneck:recurring', data: { component: analysis.component, occurrences: recurrence.count, timespan: recurrence.timespan, }, }, }); // Generate advanced optimization const optimization = await generateAdvancedOptimization( analysis, recurrence, context ); if (optimization) { context.performance.optimizations.push(optimization); } } // Correlate with other metrics const correlations = await findMetricCorrelations( analysis.component, context ); if (correlations.length > 0) { sideEffects.push({ type: 'log', action: 'write', data: { level: 'info', message: 'Bottleneck correlations found', data: { bottleneck: analysis, correlations }, }, }); } return { continue: true, sideEffects, }; }, }; // ===== Performance Optimization Hook ===== export const performanceOptimizationHook = { id: 'agentic-performance-optimization', type: 'performance-optimization' as const, priority: 80, handler: async ( payload: PerformanceHookPayload, context: AgenticHookContext ): Promise<HookHandlerResult> => { const { optimization } = payload; if (!optimization) { return { continue: true }; } const sideEffects: SideEffect[] = []; // Validate optimization const validation = await validateOptimization(optimization, context); if (!validation.valid) { sideEffects.push({ type: 'log', action: 'write', data: { level: 'warning', message: 'Optimization validation failed', data: { optimization, validation }, }, }); return { continue: true, sideEffects }; } // Simulate optimization impact const simulation = await simulateOptimization(optimization, context); if (simulation.expectedImprovement < 0.1) { // Low impact - skip return { continue: true }; } // Store optimization recommendation const recommendation = { optimization, simulation, timestamp: Date.now(), autoApply: optimization.applied && simulation.risk === 'low', }; sideEffects.push({ type: 'memory', action: 'store', data: { key: `optimization:${optimization.type}:${Date.now()}`, value: recommendation, ttl: 604800, // 7 days }, }); // Auto-apply low-risk optimizations if (recommendation.autoApply) { await applyOptimization(optimization, context); sideEffects.push({ type: 'notification', action: 'emit', data: { event: 'performance:optimization:applied', data: { optimization, automatic: true }, }, }); } else { // Queue for manual review sideEffects.push({ type: 'notification', action: 'emit', data: { event: 'performance:optimization:suggested', data: { optimization, simulation }, }, }); } return { continue: true, sideEffects, }; }, }; // ===== Performance Threshold Hook ===== export const performanceThresholdHook = { id: 'agentic-performance-threshold', type: 'performance-threshold' as const, priority: 95, handler: async ( payload: PerformanceHookPayload, context: AgenticHookContext ): Promise<HookHandlerResult> => { const { metric, value, threshold } = payload; if (threshold === undefined) { return { continue: true }; } const sideEffects: SideEffect[] = []; // Dynamic threshold adjustment const historicalData = await getMetricHistory(metric, context); const adjustedThreshold = calculateDynamicThreshold( threshold, historicalData ); if (adjustedThreshold !== threshold) { sideEffects.push({ type: 'log', action: 'write', data: { level: 'info', message: 'Threshold dynamically adjusted', data: { metric, original: threshold, adjusted: adjustedThreshold, }, }, }); } // Predict threshold violations const prediction = await predictThresholdViolation( metric, value, adjustedThreshold, historicalData ); if (prediction.willViolate && prediction.confidence > 0.7) { sideEffects.push({ type: 'notification', action: 'emit', data: { event: 'performance:threshold:predicted', data: { metric, currentValue: value, threshold: adjustedThreshold, predictedTime: prediction.timeToViolation, confidence: prediction.confidence, }, }, }); // Proactive optimization const proactiveOpt = await generateProactiveOptimization( metric, prediction, context ); if (proactiveOpt) { context.performance.optimizations.push(proactiveOpt); } } return { continue: true, sideEffects, }; }, }; // ===== Helper Functions ===== function extractTags(context: Record<string, any>): string[] { const tags: string[] = []; if (context.provider) tags.push(`provider:${context.provider}`); if (context.model) tags.push(`model:${context.model}`); if (context.operation) tags.push(`op:${context.operation}`); if (context.component) tags.push(`component:${context.component}`); return tags; } function checkThreshold( value: number, threshold: number, context: Record<string, any> ): boolean { // Check if threshold is violated based on context const operator = context.thresholdOperator || 'gt'; switch (operator) { case 'gt': return value > threshold; case 'gte': return value >= threshold; case 'lt': return value < threshold; case 'lte': return value <= threshold; case 'eq': return value === threshold; case 'ne': return value !== threshold; default: return value > threshold; } } async function generateOptimizationSuggestion( metric: string, value: number, threshold: number, context: AgenticHookContext ): Promise<OptimizationSuggestion | null> { // Generate optimization based on metric type const metricType = getMetricType(metric); switch (metricType) { case 'latency': if (value > threshold * 2) { return { type: 'cache', target: metric, expectedImprovement: 50, implementation: 'Enable response caching for frequently accessed data', risk: 'low', }; } else if (value > threshold * 1.5) { return { type: 'parallel', target: metric, expectedImprovement: 30, implementation: 'Parallelize independent operations', risk: 'medium', }; } break; case 'throughput': if (value < threshold * 0.5) { return { type: 'batch', target: metric, expectedImprovement: 40, implementation: 'Batch similar requests together', risk: 'low', }; } break; case 'memory': if (value > threshold * 0.9) { return { type: 'resource', target: metric, expectedImprovement: 20, implementation: 'Implement memory pooling and recycling', risk: 'medium', }; } break; } return null; } async function updateRollingAverages( metric: string, value: number, context: AgenticHookContext ): Promise<void> { const avgKey = `avg:${metric}`; const history = await context.memory.cache.get(avgKey) || []; history.push({ value, timestamp: Date.now() }); // Keep last 1000 values if (history.length > 1000) { history.shift(); } await context.memory.cache.set(avgKey, history); } async function detectAnomaly( metric: string, value: number, context: AgenticHookContext ): Promise<any | null> { const avgKey = `avg:${metric}`; const history = await context.memory.cache.get(avgKey) || []; if (history.length < 100) { return null; // Not enough data } // Calculate statistics const values = history.map((h: any) => h.value); const mean = values.reduce((a: number, b: number) => a + b, 0) / values.length; const variance = values.reduce((a: number, b: number) => a + Math.pow(b - mean, 2), 0 ) / values.length; const stdDev = Math.sqrt(variance); // Check if value is anomalous (> 3 standard deviations) const zScore = Math.abs((value - mean) / stdDev); if (zScore > 3) { return { type: 'statistical', zScore, mean, stdDev, severity: zScore > 5 ? 'high' : 'medium', }; } return null; } function mapSeverity(severity: number): BottleneckAnalysis['severity'] { if (severity >= 8) return 'critical'; if (severity >= 6) return 'high'; if (severity >= 4) return 'medium'; return 'low'; } async function checkBottleneckRecurrence( component: string, context: AgenticHookContext ): Promise<{ count: number; timespan: number }> { const historyKey = `bottleneck:history:${component}`; const history = await context.memory.cache.get(historyKey) || []; const now = Date.now(); const dayAgo = now - 86400000; // Count occurrences in last 24 hours const recentOccurrences = history.filter((h: any) => h.timestamp > dayAgo ); return { count: recentOccurrences.length, timespan: 86400000, // 24 hours in ms }; } async function generateAdvancedOptimization( bottleneck: BottleneckAnalysis, recurrence: { count: number; timespan: number }, context: AgenticHookContext ): Promise<OptimizationSuggestion | null> { // Generate advanced optimization for recurring bottlenecks if (bottleneck.severity === 'critical' && recurrence.count > 5) { return { type: 'algorithm', target: bottleneck.component, expectedImprovement: 60, implementation: `Redesign ${bottleneck.component} algorithm for better scalability`, risk: 'high', }; } if (bottleneck.severity === 'high' && recurrence.count > 3) { return { type: 'cache', target: bottleneck.component, expectedImprovement: 40, implementation: `Implement distributed caching for ${bottleneck.component}`, risk: 'medium', }; } return null; } async function findMetricCorrelations( component: string, context: AgenticHookContext ): Promise<Array<{ metric: string; correlation: number }>> { const correlations: Array<{ metric: string; correlation: number }> = []; // Check correlations with other metrics for (const [metric, data] of context.performance.metrics) { if (data.tags.includes(`component:${component}`)) { // Simple correlation check correlations.push({ metric: data.name, correlation: 0.7, // Placeholder }); } } return correlations; } async function validateOptimization( optimization: any, context: AgenticHookContext ): Promise<{ valid: boolean; reason?: string }> { // Validate optimization is safe to apply if (!optimization.type || !optimization.details) { return { valid: false, reason: 'Missing required optimization fields', }; } // Check risk level if (optimization.details === 'high' && !context.metadata.allowHighRisk) { return { valid: false, reason: 'High-risk optimizations not allowed', }; } return { valid: true }; } async function simulateOptimization( optimization: any, context: AgenticHookContext ): Promise<any> { // Simulate optimization impact const baseline = await getBaselineMetrics(optimization.type, context); const simulation = { expectedImprovement: optimization.improvement || 0.2, risk: calculateRisk(optimization), affectedMetrics: identifyAffectedMetrics(optimization), rollbackPlan: generateRollbackPlan(optimization), }; return simulation; } async function applyOptimization( optimization: any, context: AgenticHookContext ): Promise<void> { // Apply optimization // Placeholder implementation const timestamp = Date.now(); // Store optimization application await context.memory.cache.set( `applied:${optimization.type}:${timestamp}`, { optimization, appliedAt: timestamp, appliedBy: 'automatic', } ); } async function getMetricHistory( metric: string, context: AgenticHookContext ): Promise<any[]> { const historyKey = `history:${metric}`; return await context.memory.cache.get(historyKey) || []; } function calculateDynamicThreshold( baseThreshold: number, historicalData: any[] ): number { if (historicalData.length < 50) { return baseThreshold; // Not enough data } // Calculate percentile-based threshold const values = historicalData .map(d => d.value) .sort((a, b) => a - b); const p95 = values[Math.floor(values.length * 0.95)]; // Adjust threshold based on historical performance return Math.max(baseThreshold, p95 * 1.1); } async function predictThresholdViolation( metric: string, currentValue: number, threshold: number, historicalData: any[] ): Promise<any> { if (historicalData.length < 10) { return { willViolate: false, confidence: 0, }; } // Simple linear trend prediction const recentValues = historicalData.slice(-10).map(d => d.value); const trend = calculateTrend(recentValues); if (trend > 0 && currentValue > threshold * 0.8) { const timeToViolation = (threshold - currentValue) / trend; return { willViolate: true, timeToViolation, confidence: Math.min(trend * 10, 0.9), }; } return { willViolate: false, confidence: 0, }; } async function generateProactiveOptimization( metric: string, prediction: any, context: AgenticHookContext ): Promise<OptimizationSuggestion | null> { // Generate proactive optimization to prevent violation const metricType = getMetricType(metric); if (metricType === 'latency' && prediction.timeToViolation < 300000) { return { type: 'cache', target: metric, expectedImprovement: 30, implementation: 'Preemptively cache high-latency operations', risk: 'low', }; } return null; } function getMetricType(metric: string): string { if (metric.includes('latency')) return 'latency'; if (metric.includes('throughput')) return 'throughput'; if (metric.includes('memory')) return 'memory'; if (metric.includes('cpu')) return 'cpu'; return 'unknown'; } async function getBaselineMetrics( type: string, context: AgenticHookContext ): Promise<any> { // Get baseline metrics for comparison // Placeholder implementation return {}; } function calculateRisk(optimization: any): string { // Calculate optimization risk level if (optimization.type === 'algorithm') return 'high'; if (optimization.type === 'architecture') return 'high'; if (optimization.type === 'cache') return 'low'; if (optimization.type === 'batch') return 'low'; return 'medium'; } function identifyAffectedMetrics(optimization: any): string[] { // Identify metrics affected by optimization const affected: string[] = []; switch (optimization.type) { case 'cache': affected.push('latency', 'memory_usage'); break; case 'parallel': affected.push('latency', 'cpu_usage', 'throughput'); break; case 'batch': affected.push('throughput', 'latency'); break; case 'algorithm': affected.push('latency', 'cpu_usage', 'memory_usage'); break; } return affected; } function generateRollbackPlan(optimization: any): any { // Generate rollback plan return { steps: [ 'Capture current metrics', 'Apply optimization', 'Monitor for 5 minutes', 'Rollback if metrics degrade', ], triggers: { errorRate: 0.05, latencyIncrease: 1.5, }, }; } function calculateTrend(values: number[]): number { if (values.length < 2) return 0; // Simple linear regression const n = values.length; const sumX = values.reduce((a, _, i) => a + i, 0); const sumY = values.reduce((a, b) => a + b, 0); const sumXY = values.reduce((a, b, i) => a + i * b, 0); const sumX2 = values.reduce((a, _, i) => a + i * i, 0); const slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX); return slope; } // ===== Register Hooks ===== export function registerPerformanceHooks(): void { agenticHookManager.register(performanceMetricHook); agenticHookManager.register(performanceBottleneckHook); agenticHookManager.register(performanceOptimizationHook); agenticHookManager.register(performanceThresholdHook); }