jay-code
Version:
Streamlined AI CLI orchestration engine with mathematical rigor and enterprise-grade reliability
1,088 lines (987 loc) • 27.7 kB
text/typescript
/**
* Analyst Agent - Specialized in data analysis and performance optimization
*/
import { BaseAgent } from './base-agent.js';
import type {
AgentCapabilities,
AgentConfig,
AgentEnvironment,
TaskDefinition,
} from '../../swarm/types.js';
import type { ILogger } from '../../core/logger.js';
import type { IEventBus } from '../../core/event-bus.js';
import type { DistributedMemorySystem } from '../../memory/distributed-memory.js';
// Type definitions for analysis
interface AnalysisVisualization {
type: string;
title: string;
description: string;
dataPoints: number;
interactive: boolean;
}
interface AnalysisBottleneck {
component: string;
impact: string;
description: string;
recommendation: string;
}
interface AnalysisAnomaly {
id: string;
timestamp: Date;
severity: string;
score: number;
description: string;
features: string[];
}
interface AnalysisTrend {
metric: string;
direction: string;
slope: number;
significance: number;
period: string;
}
interface QualityIssue {
category: string;
severity: string;
description: string;
impact: string;
}
interface DataAnalysis {
dataset: {
name: string;
size: number;
columns: string[];
types: Record<string, string>;
};
analysisType: string;
summary: {
rowCount: number;
columnCount: number;
missingValues: number;
duplicateRows: number;
outliers: number;
};
descriptiveStats: Record<string, any>;
correlations: Record<string, any>;
distributions: Record<string, any>;
insights: string[];
recommendations: string[];
visualizations: AnalysisVisualization[];
confidence: number;
methodology: string;
timestamp: Date;
}
interface PerformanceAnalysis {
system?: string;
timeframe?: string;
metrics: Record<string, any>;
benchmarks?: Record<string, any>;
bottlenecks: AnalysisBottleneck[];
anomalies: AnalysisAnomaly[];
trends: AnalysisTrend[];
insights: string[];
recommendations: string[];
visualizations: AnalysisVisualization[];
optimizationPotential: number;
projectedImprovement: number;
confidence: number;
timestamp: Date;
alertsTriggered?: any[];
slaCompliance?: {
availability: number;
responseTime: number;
throughput: number;
};
comparison?: {
baseline: string;
improvements: string[];
regressions: string[];
};
}
interface QualityAnalysis {
codeQuality: {
complexity: number;
maintainability: number;
testCoverage: number;
technicalDebt: number;
};
issues: QualityIssue[];
patterns: string[];
recommendations: string[];
visualizations: AnalysisVisualization[];
overallScore: number;
confidence: number;
timestamp: Date;
}
interface StatisticalAnalysis {
tests: Record<string, any>;
hypothesis: string;
alpha: number;
results: Record<string, any>;
interpretation: Record<string, any>;
assumptions: {
normality: boolean;
independence: boolean;
homogeneity: boolean;
};
powerAnalysis: {
power: number;
sampleSize: number;
effectSize: number;
};
conclusions: string[];
limitations: string[];
timestamp: Date;
}
interface VisualizationResult {
chartType: string;
style: string;
interactive: boolean;
charts: any[];
dashboard: any;
insights: string[];
recommendations: string[];
exportFormats: string[];
accessibility: {
colorBlind: boolean;
screenReader: boolean;
highContrast: boolean;
};
timestamp: Date;
}
interface AnomalyDetectionResult {
method: string;
sensitivity: number;
threshold: string | number;
detected: AnalysisAnomaly[];
summary: {
total: number;
severity: {
low: number;
medium: number;
high: number;
critical: number;
};
};
patterns: string[];
recommendations: string[];
falsePositiveRate: number;
confidence: number;
timestamp: Date;
}
interface TrendAnalysisResult {
timeframe: string;
metrics: string[];
trends: AnalysisTrend[];
correlations: Record<string, number>;
patterns: {
seasonal: boolean;
cyclical: boolean;
trending: boolean;
};
forecasts: any[];
insights: string[];
recommendations: string[];
confidence: number;
timestamp: Date;
}
interface PredictiveModelResult {
algorithm: string;
features: string[];
target: string;
performance: {
accuracy: number;
precision: number;
recall: number;
f1Score: number;
rmse?: number;
mse?: number;
auc?: number;
};
validation: {
method: string;
splits: number;
crossValidation: any;
};
predictions: any[];
featureImportance: Record<string, number>;
insights: string[];
recommendations: string[];
modelMetadata: {
parameters: Record<string, any>;
training: {
epochs: number;
convergence: boolean;
finalLoss: number;
};
};
confidence: number;
timestamp: Date;
}
interface BusinessIntelligenceResult {
scope: string;
timeframe: string;
kpis: Record<string, any>;
trends: AnalysisTrend[];
insights: string[];
recommendations: string[];
actionItems: string[];
riskFactors: string[];
opportunities: string[];
marketAnalysis: {
competitors: any[];
positioning: string;
threats: string[];
opportunities: string[];
};
financialProjections: {
revenue: any[];
costs: any[];
profitability: any[];
};
confidence: number;
timestamp: Date;
}
export class AnalystAgent extends BaseAgent {
constructor(
id: string,
config: AgentConfig,
environment: AgentEnvironment,
logger: ILogger,
eventBus: IEventBus,
memory: DistributedMemorySystem,
) {
super(id, 'analyst', config, environment, logger, eventBus, memory);
}
protected getDefaultCapabilities(): AgentCapabilities {
return {
codeGeneration: false,
codeReview: true,
testing: false,
documentation: true,
research: false,
analysis: true,
webSearch: false,
apiIntegration: true,
fileSystem: true,
terminalAccess: false,
languages: ['python', 'r', 'sql', 'typescript', 'javascript', 'julia', 'scala', 'matlab'],
frameworks: [
'pandas',
'numpy',
'matplotlib',
'seaborn',
'plotly',
'dask',
'spark',
'tensorflow',
'pytorch',
'scikit-learn',
'jupyter',
'tableau',
],
domains: [
'data-analysis',
'statistical-analysis',
'performance-analysis',
'business-intelligence',
'data-visualization',
'predictive-modeling',
'machine-learning',
'data-mining',
'financial-analysis',
'market-research',
'operations-research',
'quality-assurance',
],
tools: [
'data-processor',
'statistical-analyzer',
'chart-generator',
'report-builder',
'dashboard-creator',
'ml-pipeline',
'data-validator',
'performance-profiler',
'anomaly-detector',
'trend-analyzer',
],
maxConcurrentTasks: 4,
maxMemoryUsage: 2048 * 1024 * 1024, // 2GB
maxExecutionTime: 1200000, // 20 minutes
reliability: 0.9,
speed: 0.8,
quality: 0.95,
};
}
protected getDefaultConfig(): Partial<AgentConfig> {
return {
autonomyLevel: 0.75,
learningEnabled: true,
adaptationEnabled: true,
maxTasksPerHour: 15,
maxConcurrentTasks: 4,
timeoutThreshold: 1200000,
reportingInterval: 45000,
heartbeatInterval: 12000,
permissions: ['file-read', 'file-write', 'data-access', 'database-read', 'api-access'],
trustedAgents: [],
expertise: {
'data-analysis': 0.95,
'statistical-analysis': 0.92,
visualization: 0.88,
'performance-analysis': 0.9,
'predictive-modeling': 0.85,
'business-intelligence': 0.83,
},
preferences: {
outputFormat: 'detailed',
includeCharts: true,
statisticalTests: 'comprehensive',
confidenceLevel: 0.95,
visualStyle: 'professional',
},
};
}
override async executeTask(task: TaskDefinition): Promise<any> {
this.logger.info('Analyst executing task', {
agentId: this.id,
taskType: task.type,
taskId: task.id,
});
try {
switch (task.type) {
case 'data-analysis':
return await this.analyzeData(task);
case 'performance-analysis':
return await this.analyzePerformance(task);
case 'statistical-analysis':
return await this.performStatisticalAnalysis(task);
case 'visualization':
return await this.createVisualization(task);
case 'predictive-modeling':
return await this.buildPredictiveModel(task);
case 'anomaly-detection':
return await this.detectAnomalies(task);
case 'trend-analysis':
return await this.analyzeTrends(task);
case 'business-intelligence':
return await this.generateBusinessIntelligence(task);
case 'quality-analysis':
return await this.analyzeQuality(task);
default:
return await this.performGeneralAnalysis(task);
}
} catch (error) {
this.logger.error('Analysis task failed', {
agentId: this.id,
taskId: task.id,
error: error instanceof Error ? error.message : String(error),
});
throw error;
}
}
private async analyzeData(task: TaskDefinition): Promise<any> {
const dataset = task.context?.dataset;
const analysisType = task.context?.type || 'exploratory';
const metrics = task.context?.metrics || ['central_tendency', 'distribution', 'correlation'];
const outputFormat = task.context?.format || 'report';
this.logger.info('Analyzing data', {
analysisType,
metrics,
outputFormat,
});
const analysis: DataAnalysis = {
dataset: {
name: dataset?.name || 'Unknown',
size: dataset?.size || 0,
columns: dataset?.columns || [],
types: dataset?.types || {},
},
analysisType,
summary: {
rowCount: 0,
columnCount: 0,
missingValues: 0,
duplicateRows: 0,
outliers: 0,
},
descriptiveStats: {},
correlations: {},
distributions: {},
insights: [] as string[],
recommendations: [] as string[],
visualizations: [] as AnalysisVisualization[],
confidence: 0,
methodology: 'statistical-analysis',
timestamp: new Date(),
};
// Store analysis progress
await this.memory.store(
`analysis:${task.id}:progress`,
{
status: 'analyzing',
startTime: new Date(),
analysisType,
},
{
type: 'analysis-progress',
tags: ['analysis', this.id, analysisType],
partition: 'tasks',
},
);
// Simulate data analysis
await this.delay(3000);
analysis.summary = {
rowCount: 10000,
columnCount: 15,
missingValues: 125,
duplicateRows: 23,
outliers: 47,
};
analysis.insights = [
'Strong positive correlation between variables A and B (r=0.85)',
'Variable C shows seasonal patterns with 3-month cycles',
'Data quality is high with only 1.25% missing values',
'Outliers concentrated in Q4 periods, likely due to seasonal effects',
];
analysis.recommendations = [
'Consider log transformation for skewed variables',
'Implement imputation strategy for missing values',
'Investigate Q4 outliers for business context',
'Add more recent data to improve model accuracy',
];
analysis.confidence = 0.88;
// Store final results
await this.memory.store(`analysis:${task.id}:results`, analysis, {
type: 'analysis-results',
tags: ['analysis', 'completed', this.id, analysisType],
partition: 'tasks',
});
return analysis;
}
private async analyzePerformance(task: TaskDefinition): Promise<any> {
const system = task.context?.system;
const metrics = task.context?.metrics || ['response_time', 'throughput', 'error_rate'];
const timeframe = task.context?.timeframe || '24h';
const baseline = task.context?.baseline;
this.logger.info('Analyzing performance', {
system,
metrics,
timeframe,
});
const performance: PerformanceAnalysis = {
system,
timeframe,
metrics: {},
benchmarks: {},
bottlenecks: [] as AnalysisBottleneck[],
trends: [] as AnalysisTrend[],
recommendations: [] as string[],
alertsTriggered: [] as any[],
slaCompliance: {
availability: 0,
responseTime: 0,
throughput: 0,
},
comparison: {
baseline: baseline || 'previous_week',
improvements: [] as string[],
regressions: [] as string[],
},
timestamp: new Date(),
anomalies: [] as AnalysisAnomaly[],
insights: [] as string[],
visualizations: [] as AnalysisVisualization[],
optimizationPotential: 0,
projectedImprovement: 0,
confidence: 0,
};
// Simulate performance analysis
await this.delay(2500);
performance.metrics = {
averageResponseTime: 245, // ms
p95ResponseTime: 520,
p99ResponseTime: 1200,
throughput: 1250, // requests/min
errorRate: 0.03, // 3%
availability: 99.85, // %
};
performance.bottlenecks = [
{
component: 'Database queries',
impact: 'high',
description: 'N+1 query pattern causing 40% performance degradation',
recommendation: 'Implement query optimization and caching',
},
{
component: 'Memory allocation',
impact: 'medium',
description: 'Large object creation in hot path',
recommendation: 'Use object pooling or lazy initialization',
},
];
performance.slaCompliance = {
availability: 99.85,
responseTime: 92.3,
throughput: 103.5,
};
return performance;
}
private async performStatisticalAnalysis(task: TaskDefinition): Promise<StatisticalAnalysis> {
const data = task.context?.data;
const tests = task.context?.tests || ['normality', 'correlation', 'significance'];
const alpha = task.context?.alpha || 0.05;
const hypothesis = task.context?.hypothesis;
this.logger.info('Performing statistical analysis', {
tests,
alpha,
hypothesis,
});
const statistics: StatisticalAnalysis = {
tests: {},
hypothesis: hypothesis || 'no_hypothesis',
alpha,
results: {},
interpretation: {},
assumptions: {
normality: false,
independence: false,
homogeneity: false,
},
powerAnalysis: {
power: 0,
sampleSize: 0,
effectSize: 0,
},
conclusions: [] as string[],
limitations: [] as string[],
timestamp: new Date(),
};
// Simulate statistical analysis
await this.delay(2000);
statistics.results = {
normalityTest: {
statistic: 0.923,
pValue: 0.041,
significant: true,
interpretation: 'Data deviates significantly from normal distribution',
},
correlationTest: {
coefficient: 0.756,
pValue: 0.002,
significant: true,
interpretation: 'Strong positive correlation detected',
},
};
statistics.conclusions.push(
'Null hypothesis rejected at α = 0.05 level',
"Effect size is large (Cohen's d = 0.8)",
'Results are statistically and practically significant',
);
return statistics;
}
private async createVisualization(task: TaskDefinition): Promise<VisualizationResult> {
const data = task.context?.data;
const chartType = task.context?.type || 'auto';
const style = task.context?.style || 'professional';
const interactive = task.context?.interactive || false;
this.logger.info('Creating visualization', {
chartType,
style,
interactive,
});
const visualization: VisualizationResult = {
chartType,
style,
interactive,
charts: [] as any[],
dashboard: null,
insights: [] as string[],
recommendations: [] as string[],
exportFormats: ['png', 'svg', 'pdf', 'html'],
accessibility: {
colorBlind: true,
screenReader: true,
highContrast: false,
},
timestamp: new Date(),
};
// Simulate visualization creation
await this.delay(1500);
visualization.charts.push(
{
type: 'line',
title: 'Trend Analysis Over Time',
description: 'Shows temporal patterns in the data',
dataPoints: 100,
interactive: true,
},
{
type: 'scatter',
title: 'Correlation Matrix',
description: 'Displays relationships between variables',
dataPoints: 500,
interactive: false,
},
);
visualization.insights.push(
'Clear upward trend visible in Q3-Q4',
'Seasonal patterns repeat every 3 months',
'Strong correlation between variables X and Y',
);
return visualization;
}
private async buildPredictiveModel(task: TaskDefinition): Promise<PredictiveModelResult> {
const data = task.context?.data;
const target = task.context?.target;
const algorithm = task.context?.algorithm || 'auto';
const validation = task.context?.validation || 'k-fold';
this.logger.info('Building predictive model', {
target,
algorithm,
validation,
});
const model: PredictiveModelResult = {
algorithm: algorithm === 'auto' ? 'random_forest' : algorithm,
features: [],
target: target || 'default_target',
performance: {
accuracy: 0,
precision: 0,
recall: 0,
f1Score: 0,
rmse: 0,
mse: 0,
},
validation: {
method: validation,
splits: 5,
crossValidation: {
folds: 5,
avgScore: 0,
stdDev: 0,
},
},
predictions: [],
featureImportance: {},
insights: [],
recommendations: [],
modelMetadata: {
parameters: {},
training: {
epochs: 100,
convergence: true,
finalLoss: 0.15,
},
},
confidence: 0,
timestamp: new Date(),
};
// Simulate model building
await this.delay(4000);
model.performance = {
accuracy: 0.87,
precision: 0.85,
recall: 0.89,
f1Score: 0.87,
auc: 0.92,
rmse: 2.34,
};
model.featureImportance = {
feature_1: 0.35,
feature_2: 0.28,
feature_3: 0.22,
feature_4: 0.15,
};
return model;
}
private async detectAnomalies(task: TaskDefinition): Promise<AnomalyDetectionResult> {
const data = task.context?.data;
const method = task.context?.method || 'isolation_forest';
const sensitivity = task.context?.sensitivity || 0.1;
const threshold = task.context?.threshold;
this.logger.info('Detecting anomalies', {
method,
sensitivity,
});
const anomalies: AnomalyDetectionResult = {
method,
sensitivity,
threshold: threshold || 'auto',
detected: [] as any as any[],
summary: {
total: 0,
severity: {
low: 0,
medium: 0,
high: 0,
critical: 0,
},
},
patterns: [] as any as string[],
recommendations: [] as any as string[],
falsePositiveRate: 0,
confidence: 0,
timestamp: new Date(),
};
// Simulate anomaly detection
await this.delay(2000);
(anomalies.detected as any).push(
{
id: 'anom_001',
timestamp: new Date('2024-01-15'),
severity: 'high',
score: 0.95,
description: 'Unusual spike in traffic during off-peak hours',
features: ['traffic_volume', 'time_of_day'],
},
{
id: 'anom_002',
timestamp: new Date('2024-01-16'),
severity: 'medium',
score: 0.72,
description: 'Abnormal response time pattern',
features: ['response_time', 'request_size'],
},
);
anomalies.summary = {
total: 15,
severity: {
low: 8,
medium: 4,
high: 2,
critical: 1,
},
};
anomalies.confidence = 0.83;
return anomalies;
}
private async analyzeTrends(task: TaskDefinition): Promise<TrendAnalysisResult> {
const data = task.context?.data;
const timeframe = task.context?.timeframe || '3-months';
const granularity = task.context?.granularity || 'daily';
const forecast = task.context?.forecast || false;
this.logger.info('Analyzing trends', {
timeframe,
granularity,
forecast,
});
const trends: TrendAnalysisResult = {
timeframe,
metrics: [] as any as string[],
trends: [] as any as any[],
correlations: {},
patterns: {
seasonal: false,
cyclical: false,
trending: false,
},
forecasts: forecast ? ([] as any) : [],
insights: [] as any as string[],
recommendations: [] as any as string[],
confidence: 0,
timestamp: new Date(),
};
// Simulate trend analysis
await this.delay(2500);
(trends.trends as any).push(
{
metric: 'user_engagement',
direction: 'increasing',
slope: 0.15,
significance: 0.92,
period: 'Q4-2023',
},
{
metric: 'conversion_rate',
direction: 'stable',
slope: 0.02,
significance: 0.23,
period: 'Q4-2023',
},
);
trends.patterns = {
seasonal: true,
cyclical: false,
trending: true,
};
trends.confidence = 0.89;
return trends;
}
private async generateBusinessIntelligence(
task: TaskDefinition,
): Promise<BusinessIntelligenceResult> {
const domain = task.context?.domain || 'general';
const metrics = task.context?.metrics || ['revenue', 'growth', 'efficiency'];
const timeframe = task.context?.timeframe || 'quarterly';
const audience = task.context?.audience || 'executive';
this.logger.info('Generating business intelligence', {
domain,
metrics,
timeframe,
audience,
});
const intelligence: BusinessIntelligenceResult = {
scope: domain,
timeframe,
kpis: {},
trends: [],
insights: [],
recommendations: [],
actionItems: [],
riskFactors: [],
opportunities: [],
marketAnalysis: {
competitors: [],
positioning: '',
threats: [],
opportunities: [],
},
financialProjections: {
revenue: [],
costs: [],
profitability: [],
},
confidence: 0,
timestamp: new Date(),
};
// Simulate business intelligence generation
await this.delay(3500);
intelligence.kpis = {
revenue_growth: 12.5,
customer_acquisition_cost: 45.3,
lifetime_value: 1250.0,
churn_rate: 5.2,
market_share: 15.7,
};
intelligence.insights = [
'Customer acquisition costs decreased by 18% due to improved targeting',
'Premium tier adoption increased 35% following feature updates',
'Seasonal patterns show consistent Q4 revenue spikes',
];
intelligence.recommendations = [
'Increase marketing budget allocation to high-performing channels',
'Develop retention strategies for at-risk customer segments',
'Accelerate premium feature development to capture market demand',
];
intelligence.confidence = 0.91;
return intelligence;
}
private async analyzeQuality(task: TaskDefinition): Promise<QualityAnalysis> {
const subject = task.context?.subject;
const criteria = task.context?.criteria || ['accuracy', 'completeness', 'consistency'];
const standards = task.context?.standards || 'industry';
const benchmark = task.context?.benchmark;
this.logger.info('Analyzing quality', {
subject,
criteria,
standards,
});
const quality: QualityAnalysis = {
codeQuality: {
complexity: 0,
maintainability: 0,
testCoverage: 0,
technicalDebt: 0,
},
issues: [] as any as QualityIssue[],
patterns: [] as any as string[],
recommendations: [] as any as string[],
visualizations: [] as any as AnalysisVisualization[],
overallScore: 0,
confidence: 0,
timestamp: new Date(),
};
// Simulate quality analysis
await this.delay(2000);
quality.codeQuality = {
complexity: 3.2,
maintainability: 0.87,
testCoverage: 0.91,
technicalDebt: 0.23,
};
quality.overallScore = 0.91;
(quality.issues as any).push({
category: 'completeness',
severity: 'medium',
description: 'Missing values in 13% of records',
impact: 'Affects downstream analysis accuracy',
});
(quality.patterns as any).push('High complexity in authentication module');
(quality.recommendations as any).push('Implement automated testing coverage');
quality.confidence = 0.89;
return quality;
}
private async performGeneralAnalysis(task: TaskDefinition): Promise<any> {
this.logger.info('Performing general analysis', {
description: task.description,
});
// Default to data analysis
return await this.analyzeData(task);
}
private async delay(ms: number): Promise<void> {
return new Promise((resolve) => setTimeout(resolve, ms));
}
override getAgentStatus(): any {
return {
...super.getAgentStatus(),
specialization: 'Data Analysis & Performance Optimization',
analyticsCapabilities: [
'Statistical Analysis',
'Data Visualization',
'Performance Analysis',
'Predictive Modeling',
'Anomaly Detection',
'Business Intelligence',
],
supportedFormats: ['CSV', 'JSON', 'Parquet', 'SQL', 'Excel'],
statisticalMethods: ['Descriptive', 'Inferential', 'Multivariate', 'Time Series'],
currentAnalyses: this.getCurrentTasks().length,
averageAnalysisTime: '10-20 minutes',
lastAnalysisCompleted: this.getLastTaskCompletedTime(),
preferredTools: ['Python', 'R', 'SQL', 'Jupyter'],
};
}
}
export const createAnalystAgent = (
id: string,
config: Partial<AgentConfig>,
environment: Partial<AgentEnvironment>,
logger: ILogger,
eventBus: IEventBus,
memory: DistributedMemorySystem,
): AnalystAgent => {
const tempAgent = new AnalystAgent(
id,
{} as AgentConfig,
{} as AgentEnvironment,
logger,
eventBus,
memory,
);
const defaultConfig = (tempAgent as any).getDefaultConfig();
const defaultEnv = {
runtime: 'deno' as const,
version: '1.40.0',
workingDirectory: './agents/analyst',
tempDirectory: './tmp/analyst',
logDirectory: './logs/analyst',
apiEndpoints: {},
credentials: {},
availableTools: ['data-processor', 'statistical-analyzer', 'chart-generator', 'report-builder'],
toolConfigs: {
dataProcessor: { chunkSize: 10000, parallel: true },
chartGenerator: { style: 'professional', dpi: 300 },
reportBuilder: { format: 'pdf', includeCharts: true },
},
};
return new AnalystAgent(
id,
{ ...defaultConfig, ...config } as AgentConfig,
{ ...defaultEnv, ...environment } as AgentEnvironment,
logger,
eventBus,
memory,
);
};