UNPKG

jay-code

Version:

Streamlined AI CLI orchestration engine with mathematical rigor and enterprise-grade reliability

1,088 lines (987 loc) 27.7 kB
/** * Analyst Agent - Specialized in data analysis and performance optimization */ import { BaseAgent } from './base-agent.js'; import type { AgentCapabilities, AgentConfig, AgentEnvironment, TaskDefinition, } from '../../swarm/types.js'; import type { ILogger } from '../../core/logger.js'; import type { IEventBus } from '../../core/event-bus.js'; import type { DistributedMemorySystem } from '../../memory/distributed-memory.js'; // Type definitions for analysis interface AnalysisVisualization { type: string; title: string; description: string; dataPoints: number; interactive: boolean; } interface AnalysisBottleneck { component: string; impact: string; description: string; recommendation: string; } interface AnalysisAnomaly { id: string; timestamp: Date; severity: string; score: number; description: string; features: string[]; } interface AnalysisTrend { metric: string; direction: string; slope: number; significance: number; period: string; } interface QualityIssue { category: string; severity: string; description: string; impact: string; } interface DataAnalysis { dataset: { name: string; size: number; columns: string[]; types: Record<string, string>; }; analysisType: string; summary: { rowCount: number; columnCount: number; missingValues: number; duplicateRows: number; outliers: number; }; descriptiveStats: Record<string, any>; correlations: Record<string, any>; distributions: Record<string, any>; insights: string[]; recommendations: string[]; visualizations: AnalysisVisualization[]; confidence: number; methodology: string; timestamp: Date; } interface PerformanceAnalysis { system?: string; timeframe?: string; metrics: Record<string, any>; benchmarks?: Record<string, any>; bottlenecks: AnalysisBottleneck[]; anomalies: AnalysisAnomaly[]; trends: AnalysisTrend[]; insights: string[]; recommendations: string[]; visualizations: AnalysisVisualization[]; optimizationPotential: number; projectedImprovement: number; confidence: number; timestamp: Date; alertsTriggered?: any[]; slaCompliance?: { availability: number; responseTime: number; throughput: number; }; comparison?: { baseline: string; improvements: string[]; regressions: string[]; }; } interface QualityAnalysis { codeQuality: { complexity: number; maintainability: number; testCoverage: number; technicalDebt: number; }; issues: QualityIssue[]; patterns: string[]; recommendations: string[]; visualizations: AnalysisVisualization[]; overallScore: number; confidence: number; timestamp: Date; } interface StatisticalAnalysis { tests: Record<string, any>; hypothesis: string; alpha: number; results: Record<string, any>; interpretation: Record<string, any>; assumptions: { normality: boolean; independence: boolean; homogeneity: boolean; }; powerAnalysis: { power: number; sampleSize: number; effectSize: number; }; conclusions: string[]; limitations: string[]; timestamp: Date; } interface VisualizationResult { chartType: string; style: string; interactive: boolean; charts: any[]; dashboard: any; insights: string[]; recommendations: string[]; exportFormats: string[]; accessibility: { colorBlind: boolean; screenReader: boolean; highContrast: boolean; }; timestamp: Date; } interface AnomalyDetectionResult { method: string; sensitivity: number; threshold: string | number; detected: AnalysisAnomaly[]; summary: { total: number; severity: { low: number; medium: number; high: number; critical: number; }; }; patterns: string[]; recommendations: string[]; falsePositiveRate: number; confidence: number; timestamp: Date; } interface TrendAnalysisResult { timeframe: string; metrics: string[]; trends: AnalysisTrend[]; correlations: Record<string, number>; patterns: { seasonal: boolean; cyclical: boolean; trending: boolean; }; forecasts: any[]; insights: string[]; recommendations: string[]; confidence: number; timestamp: Date; } interface PredictiveModelResult { algorithm: string; features: string[]; target: string; performance: { accuracy: number; precision: number; recall: number; f1Score: number; rmse?: number; mse?: number; auc?: number; }; validation: { method: string; splits: number; crossValidation: any; }; predictions: any[]; featureImportance: Record<string, number>; insights: string[]; recommendations: string[]; modelMetadata: { parameters: Record<string, any>; training: { epochs: number; convergence: boolean; finalLoss: number; }; }; confidence: number; timestamp: Date; } interface BusinessIntelligenceResult { scope: string; timeframe: string; kpis: Record<string, any>; trends: AnalysisTrend[]; insights: string[]; recommendations: string[]; actionItems: string[]; riskFactors: string[]; opportunities: string[]; marketAnalysis: { competitors: any[]; positioning: string; threats: string[]; opportunities: string[]; }; financialProjections: { revenue: any[]; costs: any[]; profitability: any[]; }; confidence: number; timestamp: Date; } export class AnalystAgent extends BaseAgent { constructor( id: string, config: AgentConfig, environment: AgentEnvironment, logger: ILogger, eventBus: IEventBus, memory: DistributedMemorySystem, ) { super(id, 'analyst', config, environment, logger, eventBus, memory); } protected getDefaultCapabilities(): AgentCapabilities { return { codeGeneration: false, codeReview: true, testing: false, documentation: true, research: false, analysis: true, webSearch: false, apiIntegration: true, fileSystem: true, terminalAccess: false, languages: ['python', 'r', 'sql', 'typescript', 'javascript', 'julia', 'scala', 'matlab'], frameworks: [ 'pandas', 'numpy', 'matplotlib', 'seaborn', 'plotly', 'dask', 'spark', 'tensorflow', 'pytorch', 'scikit-learn', 'jupyter', 'tableau', ], domains: [ 'data-analysis', 'statistical-analysis', 'performance-analysis', 'business-intelligence', 'data-visualization', 'predictive-modeling', 'machine-learning', 'data-mining', 'financial-analysis', 'market-research', 'operations-research', 'quality-assurance', ], tools: [ 'data-processor', 'statistical-analyzer', 'chart-generator', 'report-builder', 'dashboard-creator', 'ml-pipeline', 'data-validator', 'performance-profiler', 'anomaly-detector', 'trend-analyzer', ], maxConcurrentTasks: 4, maxMemoryUsage: 2048 * 1024 * 1024, // 2GB maxExecutionTime: 1200000, // 20 minutes reliability: 0.9, speed: 0.8, quality: 0.95, }; } protected getDefaultConfig(): Partial<AgentConfig> { return { autonomyLevel: 0.75, learningEnabled: true, adaptationEnabled: true, maxTasksPerHour: 15, maxConcurrentTasks: 4, timeoutThreshold: 1200000, reportingInterval: 45000, heartbeatInterval: 12000, permissions: ['file-read', 'file-write', 'data-access', 'database-read', 'api-access'], trustedAgents: [], expertise: { 'data-analysis': 0.95, 'statistical-analysis': 0.92, visualization: 0.88, 'performance-analysis': 0.9, 'predictive-modeling': 0.85, 'business-intelligence': 0.83, }, preferences: { outputFormat: 'detailed', includeCharts: true, statisticalTests: 'comprehensive', confidenceLevel: 0.95, visualStyle: 'professional', }, }; } override async executeTask(task: TaskDefinition): Promise<any> { this.logger.info('Analyst executing task', { agentId: this.id, taskType: task.type, taskId: task.id, }); try { switch (task.type) { case 'data-analysis': return await this.analyzeData(task); case 'performance-analysis': return await this.analyzePerformance(task); case 'statistical-analysis': return await this.performStatisticalAnalysis(task); case 'visualization': return await this.createVisualization(task); case 'predictive-modeling': return await this.buildPredictiveModel(task); case 'anomaly-detection': return await this.detectAnomalies(task); case 'trend-analysis': return await this.analyzeTrends(task); case 'business-intelligence': return await this.generateBusinessIntelligence(task); case 'quality-analysis': return await this.analyzeQuality(task); default: return await this.performGeneralAnalysis(task); } } catch (error) { this.logger.error('Analysis task failed', { agentId: this.id, taskId: task.id, error: error instanceof Error ? error.message : String(error), }); throw error; } } private async analyzeData(task: TaskDefinition): Promise<any> { const dataset = task.context?.dataset; const analysisType = task.context?.type || 'exploratory'; const metrics = task.context?.metrics || ['central_tendency', 'distribution', 'correlation']; const outputFormat = task.context?.format || 'report'; this.logger.info('Analyzing data', { analysisType, metrics, outputFormat, }); const analysis: DataAnalysis = { dataset: { name: dataset?.name || 'Unknown', size: dataset?.size || 0, columns: dataset?.columns || [], types: dataset?.types || {}, }, analysisType, summary: { rowCount: 0, columnCount: 0, missingValues: 0, duplicateRows: 0, outliers: 0, }, descriptiveStats: {}, correlations: {}, distributions: {}, insights: [] as string[], recommendations: [] as string[], visualizations: [] as AnalysisVisualization[], confidence: 0, methodology: 'statistical-analysis', timestamp: new Date(), }; // Store analysis progress await this.memory.store( `analysis:${task.id}:progress`, { status: 'analyzing', startTime: new Date(), analysisType, }, { type: 'analysis-progress', tags: ['analysis', this.id, analysisType], partition: 'tasks', }, ); // Simulate data analysis await this.delay(3000); analysis.summary = { rowCount: 10000, columnCount: 15, missingValues: 125, duplicateRows: 23, outliers: 47, }; analysis.insights = [ 'Strong positive correlation between variables A and B (r=0.85)', 'Variable C shows seasonal patterns with 3-month cycles', 'Data quality is high with only 1.25% missing values', 'Outliers concentrated in Q4 periods, likely due to seasonal effects', ]; analysis.recommendations = [ 'Consider log transformation for skewed variables', 'Implement imputation strategy for missing values', 'Investigate Q4 outliers for business context', 'Add more recent data to improve model accuracy', ]; analysis.confidence = 0.88; // Store final results await this.memory.store(`analysis:${task.id}:results`, analysis, { type: 'analysis-results', tags: ['analysis', 'completed', this.id, analysisType], partition: 'tasks', }); return analysis; } private async analyzePerformance(task: TaskDefinition): Promise<any> { const system = task.context?.system; const metrics = task.context?.metrics || ['response_time', 'throughput', 'error_rate']; const timeframe = task.context?.timeframe || '24h'; const baseline = task.context?.baseline; this.logger.info('Analyzing performance', { system, metrics, timeframe, }); const performance: PerformanceAnalysis = { system, timeframe, metrics: {}, benchmarks: {}, bottlenecks: [] as AnalysisBottleneck[], trends: [] as AnalysisTrend[], recommendations: [] as string[], alertsTriggered: [] as any[], slaCompliance: { availability: 0, responseTime: 0, throughput: 0, }, comparison: { baseline: baseline || 'previous_week', improvements: [] as string[], regressions: [] as string[], }, timestamp: new Date(), anomalies: [] as AnalysisAnomaly[], insights: [] as string[], visualizations: [] as AnalysisVisualization[], optimizationPotential: 0, projectedImprovement: 0, confidence: 0, }; // Simulate performance analysis await this.delay(2500); performance.metrics = { averageResponseTime: 245, // ms p95ResponseTime: 520, p99ResponseTime: 1200, throughput: 1250, // requests/min errorRate: 0.03, // 3% availability: 99.85, // % }; performance.bottlenecks = [ { component: 'Database queries', impact: 'high', description: 'N+1 query pattern causing 40% performance degradation', recommendation: 'Implement query optimization and caching', }, { component: 'Memory allocation', impact: 'medium', description: 'Large object creation in hot path', recommendation: 'Use object pooling or lazy initialization', }, ]; performance.slaCompliance = { availability: 99.85, responseTime: 92.3, throughput: 103.5, }; return performance; } private async performStatisticalAnalysis(task: TaskDefinition): Promise<StatisticalAnalysis> { const data = task.context?.data; const tests = task.context?.tests || ['normality', 'correlation', 'significance']; const alpha = task.context?.alpha || 0.05; const hypothesis = task.context?.hypothesis; this.logger.info('Performing statistical analysis', { tests, alpha, hypothesis, }); const statistics: StatisticalAnalysis = { tests: {}, hypothesis: hypothesis || 'no_hypothesis', alpha, results: {}, interpretation: {}, assumptions: { normality: false, independence: false, homogeneity: false, }, powerAnalysis: { power: 0, sampleSize: 0, effectSize: 0, }, conclusions: [] as string[], limitations: [] as string[], timestamp: new Date(), }; // Simulate statistical analysis await this.delay(2000); statistics.results = { normalityTest: { statistic: 0.923, pValue: 0.041, significant: true, interpretation: 'Data deviates significantly from normal distribution', }, correlationTest: { coefficient: 0.756, pValue: 0.002, significant: true, interpretation: 'Strong positive correlation detected', }, }; statistics.conclusions.push( 'Null hypothesis rejected at α = 0.05 level', "Effect size is large (Cohen's d = 0.8)", 'Results are statistically and practically significant', ); return statistics; } private async createVisualization(task: TaskDefinition): Promise<VisualizationResult> { const data = task.context?.data; const chartType = task.context?.type || 'auto'; const style = task.context?.style || 'professional'; const interactive = task.context?.interactive || false; this.logger.info('Creating visualization', { chartType, style, interactive, }); const visualization: VisualizationResult = { chartType, style, interactive, charts: [] as any[], dashboard: null, insights: [] as string[], recommendations: [] as string[], exportFormats: ['png', 'svg', 'pdf', 'html'], accessibility: { colorBlind: true, screenReader: true, highContrast: false, }, timestamp: new Date(), }; // Simulate visualization creation await this.delay(1500); visualization.charts.push( { type: 'line', title: 'Trend Analysis Over Time', description: 'Shows temporal patterns in the data', dataPoints: 100, interactive: true, }, { type: 'scatter', title: 'Correlation Matrix', description: 'Displays relationships between variables', dataPoints: 500, interactive: false, }, ); visualization.insights.push( 'Clear upward trend visible in Q3-Q4', 'Seasonal patterns repeat every 3 months', 'Strong correlation between variables X and Y', ); return visualization; } private async buildPredictiveModel(task: TaskDefinition): Promise<PredictiveModelResult> { const data = task.context?.data; const target = task.context?.target; const algorithm = task.context?.algorithm || 'auto'; const validation = task.context?.validation || 'k-fold'; this.logger.info('Building predictive model', { target, algorithm, validation, }); const model: PredictiveModelResult = { algorithm: algorithm === 'auto' ? 'random_forest' : algorithm, features: [], target: target || 'default_target', performance: { accuracy: 0, precision: 0, recall: 0, f1Score: 0, rmse: 0, mse: 0, }, validation: { method: validation, splits: 5, crossValidation: { folds: 5, avgScore: 0, stdDev: 0, }, }, predictions: [], featureImportance: {}, insights: [], recommendations: [], modelMetadata: { parameters: {}, training: { epochs: 100, convergence: true, finalLoss: 0.15, }, }, confidence: 0, timestamp: new Date(), }; // Simulate model building await this.delay(4000); model.performance = { accuracy: 0.87, precision: 0.85, recall: 0.89, f1Score: 0.87, auc: 0.92, rmse: 2.34, }; model.featureImportance = { feature_1: 0.35, feature_2: 0.28, feature_3: 0.22, feature_4: 0.15, }; return model; } private async detectAnomalies(task: TaskDefinition): Promise<AnomalyDetectionResult> { const data = task.context?.data; const method = task.context?.method || 'isolation_forest'; const sensitivity = task.context?.sensitivity || 0.1; const threshold = task.context?.threshold; this.logger.info('Detecting anomalies', { method, sensitivity, }); const anomalies: AnomalyDetectionResult = { method, sensitivity, threshold: threshold || 'auto', detected: [] as any as any[], summary: { total: 0, severity: { low: 0, medium: 0, high: 0, critical: 0, }, }, patterns: [] as any as string[], recommendations: [] as any as string[], falsePositiveRate: 0, confidence: 0, timestamp: new Date(), }; // Simulate anomaly detection await this.delay(2000); (anomalies.detected as any).push( { id: 'anom_001', timestamp: new Date('2024-01-15'), severity: 'high', score: 0.95, description: 'Unusual spike in traffic during off-peak hours', features: ['traffic_volume', 'time_of_day'], }, { id: 'anom_002', timestamp: new Date('2024-01-16'), severity: 'medium', score: 0.72, description: 'Abnormal response time pattern', features: ['response_time', 'request_size'], }, ); anomalies.summary = { total: 15, severity: { low: 8, medium: 4, high: 2, critical: 1, }, }; anomalies.confidence = 0.83; return anomalies; } private async analyzeTrends(task: TaskDefinition): Promise<TrendAnalysisResult> { const data = task.context?.data; const timeframe = task.context?.timeframe || '3-months'; const granularity = task.context?.granularity || 'daily'; const forecast = task.context?.forecast || false; this.logger.info('Analyzing trends', { timeframe, granularity, forecast, }); const trends: TrendAnalysisResult = { timeframe, metrics: [] as any as string[], trends: [] as any as any[], correlations: {}, patterns: { seasonal: false, cyclical: false, trending: false, }, forecasts: forecast ? ([] as any) : [], insights: [] as any as string[], recommendations: [] as any as string[], confidence: 0, timestamp: new Date(), }; // Simulate trend analysis await this.delay(2500); (trends.trends as any).push( { metric: 'user_engagement', direction: 'increasing', slope: 0.15, significance: 0.92, period: 'Q4-2023', }, { metric: 'conversion_rate', direction: 'stable', slope: 0.02, significance: 0.23, period: 'Q4-2023', }, ); trends.patterns = { seasonal: true, cyclical: false, trending: true, }; trends.confidence = 0.89; return trends; } private async generateBusinessIntelligence( task: TaskDefinition, ): Promise<BusinessIntelligenceResult> { const domain = task.context?.domain || 'general'; const metrics = task.context?.metrics || ['revenue', 'growth', 'efficiency']; const timeframe = task.context?.timeframe || 'quarterly'; const audience = task.context?.audience || 'executive'; this.logger.info('Generating business intelligence', { domain, metrics, timeframe, audience, }); const intelligence: BusinessIntelligenceResult = { scope: domain, timeframe, kpis: {}, trends: [], insights: [], recommendations: [], actionItems: [], riskFactors: [], opportunities: [], marketAnalysis: { competitors: [], positioning: '', threats: [], opportunities: [], }, financialProjections: { revenue: [], costs: [], profitability: [], }, confidence: 0, timestamp: new Date(), }; // Simulate business intelligence generation await this.delay(3500); intelligence.kpis = { revenue_growth: 12.5, customer_acquisition_cost: 45.3, lifetime_value: 1250.0, churn_rate: 5.2, market_share: 15.7, }; intelligence.insights = [ 'Customer acquisition costs decreased by 18% due to improved targeting', 'Premium tier adoption increased 35% following feature updates', 'Seasonal patterns show consistent Q4 revenue spikes', ]; intelligence.recommendations = [ 'Increase marketing budget allocation to high-performing channels', 'Develop retention strategies for at-risk customer segments', 'Accelerate premium feature development to capture market demand', ]; intelligence.confidence = 0.91; return intelligence; } private async analyzeQuality(task: TaskDefinition): Promise<QualityAnalysis> { const subject = task.context?.subject; const criteria = task.context?.criteria || ['accuracy', 'completeness', 'consistency']; const standards = task.context?.standards || 'industry'; const benchmark = task.context?.benchmark; this.logger.info('Analyzing quality', { subject, criteria, standards, }); const quality: QualityAnalysis = { codeQuality: { complexity: 0, maintainability: 0, testCoverage: 0, technicalDebt: 0, }, issues: [] as any as QualityIssue[], patterns: [] as any as string[], recommendations: [] as any as string[], visualizations: [] as any as AnalysisVisualization[], overallScore: 0, confidence: 0, timestamp: new Date(), }; // Simulate quality analysis await this.delay(2000); quality.codeQuality = { complexity: 3.2, maintainability: 0.87, testCoverage: 0.91, technicalDebt: 0.23, }; quality.overallScore = 0.91; (quality.issues as any).push({ category: 'completeness', severity: 'medium', description: 'Missing values in 13% of records', impact: 'Affects downstream analysis accuracy', }); (quality.patterns as any).push('High complexity in authentication module'); (quality.recommendations as any).push('Implement automated testing coverage'); quality.confidence = 0.89; return quality; } private async performGeneralAnalysis(task: TaskDefinition): Promise<any> { this.logger.info('Performing general analysis', { description: task.description, }); // Default to data analysis return await this.analyzeData(task); } private async delay(ms: number): Promise<void> { return new Promise((resolve) => setTimeout(resolve, ms)); } override getAgentStatus(): any { return { ...super.getAgentStatus(), specialization: 'Data Analysis & Performance Optimization', analyticsCapabilities: [ 'Statistical Analysis', 'Data Visualization', 'Performance Analysis', 'Predictive Modeling', 'Anomaly Detection', 'Business Intelligence', ], supportedFormats: ['CSV', 'JSON', 'Parquet', 'SQL', 'Excel'], statisticalMethods: ['Descriptive', 'Inferential', 'Multivariate', 'Time Series'], currentAnalyses: this.getCurrentTasks().length, averageAnalysisTime: '10-20 minutes', lastAnalysisCompleted: this.getLastTaskCompletedTime(), preferredTools: ['Python', 'R', 'SQL', 'Jupyter'], }; } } export const createAnalystAgent = ( id: string, config: Partial<AgentConfig>, environment: Partial<AgentEnvironment>, logger: ILogger, eventBus: IEventBus, memory: DistributedMemorySystem, ): AnalystAgent => { const tempAgent = new AnalystAgent( id, {} as AgentConfig, {} as AgentEnvironment, logger, eventBus, memory, ); const defaultConfig = (tempAgent as any).getDefaultConfig(); const defaultEnv = { runtime: 'deno' as const, version: '1.40.0', workingDirectory: './agents/analyst', tempDirectory: './tmp/analyst', logDirectory: './logs/analyst', apiEndpoints: {}, credentials: {}, availableTools: ['data-processor', 'statistical-analyzer', 'chart-generator', 'report-builder'], toolConfigs: { dataProcessor: { chunkSize: 10000, parallel: true }, chartGenerator: { style: 'professional', dpi: 300 }, reportBuilder: { format: 'pdf', includeCharts: true }, }, }; return new AnalystAgent( id, { ...defaultConfig, ...config } as AgentConfig, { ...defaultEnv, ...environment } as AgentEnvironment, logger, eventBus, memory, ); };