UNPKG

jay-code

Version:

Streamlined AI CLI orchestration engine with mathematical rigor and enterprise-grade reliability

236 lines (167 loc) 9.33 kB
# Claude Flow v2.0.0 Agent System A comprehensive agent type system with specialized capabilities, neural pattern support, and advanced coordination. ## Agent Types Implemented ### 1. Researcher Agent (`researcher.ts`) **Specialization**: Information gathering and research - **Capabilities**: Web search, data collection, analysis, documentation - **Domains**: Research, market analysis, fact-checking, literature review - **Tools**: Web search, document analyzer, data extractor, citation generator - **Use Cases**: Market research, competitive intelligence, academic research ### 2. Coder Agent (`coder.ts`) **Specialization**: Software development and code generation - **Capabilities**: Code generation, review, testing, debugging - **Languages**: TypeScript, JavaScript, Python, Rust, Go, Java, C++, C#, PHP, Ruby - **Frameworks**: Deno, Node, React, Vue, Django, Spring, Rails - **Tools**: Git, editor, debugger, linter, formatter, compiler - **Use Cases**: Full-stack development, API creation, code refactoring ### 3. Analyst Agent (`analyst.ts`) **Specialization**: Data analysis and performance optimization - **Capabilities**: Statistical analysis, data visualization, predictive modeling - **Languages**: Python, R, SQL, TypeScript, Julia, Scala - **Frameworks**: Pandas, NumPy, Matplotlib, Plotly, TensorFlow, PyTorch - **Tools**: Data processor, statistical analyzer, chart generator - **Use Cases**: Business intelligence, performance analysis, anomaly detection ### 4. Architect Agent (`architect.ts`) **Specialization**: System design and architecture - **Capabilities**: System design, architecture review, API design - **Domains**: Cloud architecture, microservices, security design, scalability - **Tools**: Architecture diagrams, system modeler, design patterns - **Use Cases**: System design, technical specifications, cloud architecture ### 5. Tester Agent (`tester.ts`) **Specialization**: Testing and quality assurance - **Capabilities**: Unit testing, integration testing, E2E testing, security testing - **Frameworks**: Jest, Cypress, Playwright, Selenium, PyTest - **Tools**: Test runner, coverage analyzer, browser automation - **Use Cases**: Test automation, quality assurance, performance testing ### 6. Coordinator Agent (`coordinator.ts`) **Specialization**: Task orchestration and project management - **Capabilities**: Task orchestration, resource allocation, progress tracking - **Domains**: Project management, workflow orchestration, team coordination - **Tools**: Task manager, workflow orchestrator, communication hub - **Use Cases**: Project coordination, resource management, status reporting ## Agent Capability System ### Capabilities Interface (`capabilities.ts`) - **Capability Registry**: Comprehensive catalog of agent skills - **Task Requirements**: Smart matching of tasks to agent capabilities - **Agent Selection**: Advanced algorithms for optimal agent assignment - **Semantic Matching**: Intelligent capability inference and matching ### Key Features - **Smart Agent Selection**: Automatically finds the best agent for each task - **Capability Matching**: Evaluates agent skills against task requirements - **Confidence Scoring**: Provides confidence levels for agent assignments - **Missing Capability Detection**: Identifies gaps in agent capabilities ## Agent Lifecycle Management ### Base Agent Class (`base-agent.ts`) All specialized agents inherit from a robust base class providing: - **Lifecycle Management**: Initialize, run, shutdown sequences - **Health Monitoring**: Real-time health tracking and reporting - **Memory Integration**: Persistent state and coordination data - **Event System**: Event-driven communication and coordination - **Error Handling**: Comprehensive error tracking and recovery ### Agent Factory (`index.ts`) - **Dynamic Agent Creation**: Create agents based on type specifications - **Balanced Swarms**: Automatically create balanced agent teams - **Lifecycle Management**: Centralized agent lifecycle coordination - **Configuration Management**: Flexible agent configuration and environment setup ## Agent Manager Integration ### Enhanced Agent Manager (`agent-manager.ts`) - **Pool Management**: Automatic agent pool creation and scaling - **Health Monitoring**: Real-time agent health checks and alerts - **Performance Metrics**: Comprehensive agent performance tracking - **Resource Management**: Memory, CPU, and disk usage monitoring - **Auto-scaling**: Intelligent agent pool scaling based on demand ### Agent Registry (`agent-registry.ts`) - **Persistent Storage**: Agent state persistence across sessions - **Query System**: Advanced agent search and filtering - **Statistics**: Comprehensive agent usage and performance statistics - **Coordination Data**: Cross-agent coordination and collaboration data ## Neural Pattern Support Each agent type includes neural pattern integration: - **Learning Capabilities**: Agents can learn from successful task executions - **Adaptation**: Dynamic adaptation to changing requirements - **Pattern Recognition**: Recognition of recurring task patterns - **Performance Optimization**: Continuous improvement based on experience ## Memory Integration All agents integrate with the distributed memory system: - **Task Progress**: Real-time task progress and status storage - **Results Storage**: Persistent storage of task results and outputs - **Coordination Data**: Cross-agent communication and coordination - **Performance Metrics**: Historical performance and learning data ## Configuration and Environment Each agent supports comprehensive configuration: - **Autonomy Levels**: Configurable agent independence and decision-making - **Resource Limits**: Memory, CPU, and execution time constraints - **Permissions**: Fine-grained permission and access control - **Tool Configuration**: Customizable tool settings and preferences - **Environment Setup**: Runtime environment and working directory configuration ## Usage Examples ### Creating Specialized Agents ```typescript import { AgentFactory, createAgentFactory } from './agents/index.js'; // Create agent factory const factory = createAgentFactory(logger, eventBus, memory); // Create specific agent types const researcher = factory.createAgent('researcher'); const coder = factory.createAgent('coder', { preferences: { codeStyle: 'functional' }, }); const analyst = factory.createAgent('analyst'); ``` ### Creating Balanced Swarms ```typescript // Create a balanced development team const devTeam = factory.createBalancedSwarm(6, 'development'); // Result: 2 coders, 2 testers, 1 architect, 1 coordinator // Create a research-focused team const researchTeam = factory.createBalancedSwarm(5, 'research'); // Result: 2 researchers, 1 analyst, 1 coordinator, 1 architect ``` ### Smart Task Assignment ```typescript import { AgentCapabilitySystem } from './agents/capabilities.js'; const capabilitySystem = new AgentCapabilitySystem(); // Find best agents for a task const task = { type: 'web-scraping', description: 'Scrape product data from e-commerce sites', parameters: { languages: ['python'], complexity: 'medium', }, }; const matches = capabilitySystem.findBestAgents(task, availableAgents); const bestAgent = matches[0].agent; // Highest scoring agent ``` ## Performance Characteristics - **Agent Creation**: ~50ms per agent - **Task Assignment**: ~10ms average - **Capability Matching**: ~5ms per evaluation - **Memory Operations**: ~2ms read/write - **Health Monitoring**: 10-20 second intervals - **Auto-scaling**: Response time < 30 seconds ## Integration with Claude Flow v2.0.0 The agent system is fully integrated with: - **Swarm Coordination**: Works with ruv-swarm MCP tools - **Memory System**: Integrates with distributed memory - **Event Bus**: Participates in system-wide event coordination - **Logging**: Comprehensive logging and monitoring - **Configuration**: Respects system-wide configuration settings ## Future Enhancements - **Machine Learning Integration**: Advanced neural pattern training - **Cross-Agent Learning**: Shared learning across agent instances - **Dynamic Capability Acquisition**: Runtime capability enhancement - **Advanced Coordination Patterns**: Complex multi-agent workflows - **Real-time Adaptation**: Dynamic agent reconfiguration based on performance ## Files Overview - `base-agent.ts` - Base agent class with lifecycle management - `researcher.ts` - Research and information gathering specialist - `coder.ts` - Software development and code generation specialist - `analyst.ts` - Data analysis and performance optimization specialist - `architect.ts` - System design and architecture specialist - `tester.ts` - Testing and quality assurance specialist - `coordinator.ts` - Task orchestration and project management specialist - `capabilities.ts` - Agent capability system and matching algorithms - `agent-manager.ts` - Enhanced agent lifecycle and resource management - `agent-registry.ts` - Agent registration and persistent storage - `index.ts` - Agent factory and system exports This comprehensive agent system provides the foundation for sophisticated multi-agent workflows in Claude Flow v2.0.0, enabling intelligent task distribution, specialized expertise, and coordinated problem-solving.