javascript-algorithms-and-data-structures
Version:
Algorithms and data-structures implemented on JavaScript
70 lines (57 loc) • 2.5 kB
JavaScript
import Sort from '../Sort';
export default class CountingSort extends Sort {
/**
* @param {number[]} originalArray
* @param {number} [biggestElement]
*/
sort(originalArray, biggestElement = 0) {
// Detect biggest element in array in order to build in order to build
// number bucket array later.
let detectedBiggestElement = biggestElement;
if (!detectedBiggestElement) {
originalArray.forEach((element) => {
// Visit element.
this.callbacks.visitingCallback(element);
if (this.comparator.greaterThan(element, detectedBiggestElement)) {
detectedBiggestElement = element;
}
});
}
// Init buckets array.
// This array will hold frequency of each number from originalArray.
const buckets = Array(detectedBiggestElement + 1).fill(0);
originalArray.forEach((element) => {
// Visit element.
this.callbacks.visitingCallback(element);
buckets[element] += 1;
});
// Add previous frequencies to the current one for each number in bucket
// to detect how many numbers less then current one should be standing to
// the left of current one.
for (let bucketIndex = 1; bucketIndex < buckets.length; bucketIndex += 1) {
buckets[bucketIndex] += buckets[bucketIndex - 1];
}
// Now let's shift frequencies to the right so that they show correct numbers.
// I.e. if we won't shift right than the value of buckets[5] will display how many
// elements less than 5 should be placed to the left of 5 in sorted array
// INCLUDING 5th. After shifting though this number will not include 5th anymore.
buckets.pop();
buckets.unshift(0);
// Now let's assemble sorted array.
const sortedArray = Array(originalArray.length).fill(null);
for (let elementIndex = 0; elementIndex < originalArray.length; elementIndex += 1) {
// Get the element that we want to put into correct sorted position.
const element = originalArray[elementIndex];
// Visit element.
this.callbacks.visitingCallback(element);
// Get correct position of this element in sorted array.
const elementSortedPosition = buckets[element];
// Put element into correct position in sorted array.
sortedArray[elementSortedPosition] = element;
// Increase position of current element in the bucket for future correct placements.
buckets[element] += 1;
}
// Return sorted array.
return sortedArray;
}
}