UNPKG

jandas

Version:

A very much Pandas-like JavaScript library for data science

136 lines (135 loc) 7.56 kB
import { ns, ns_arr, numx, nsx, locParamArr, Obj, DataFrameArrInitOptions, DataFrameInitOptions, PushOptions, SortOptions, MergeOptions, DataFrameRankOptions, DataFrameRaw, DropDuplicatesOptions, QueryOptions, DiffOptions, DataFrameRollingOptions } from './interfaces'; import { GroupByThen, Rolling } from './df_lib'; import Index from './Index'; import Series from './Series'; declare class DataFrame<T> { values: T[][]; shape: [number, number]; private _index; private _columns; private _tr?; constructor(arr: T[][] | Obj<T>[]); constructor(arr: T[][], options: DataFrameArrInitOptions); constructor(arr: Obj<T>[], options: DataFrameInitOptions); constructor(arr: T[][] | Obj<T>[], options?: DataFrameInitOptions | DataFrameArrInitOptions); __transpose(arr: T[][]): T[][]; _transpose(arr: T[][]): T[][]; get tr(): T[][]; set tr(vals: T[][]); get index(): Index; get columns(): Index; _indexSetterEffect(): void; set index(vals: ns_arr | Index); set columns(vals: ns_arr | Index); rename(labelMap: { index?: { [key: ns]: ns; }; columns?: { [key: ns]: ns; }; }, inplace?: false): DataFrame<T>; rename(labelMap: { index?: { [key: ns]: ns; }; columns?: { [key: ns]: ns; }; }, inplace: true): void; _p(): void; p(): void; transpose(inplace?: boolean): DataFrame<T>; _iloc_asymmetric(v1: T[][], l1: Index, l2: Index, transpose: boolean, i1: numx | boolean[], i2?: numx | boolean[]): DataFrame<T> | Series<T> | null; _iloc_symmetric(ir?: numx | boolean[], ic?: numx | boolean[]): DataFrame<T> | T | null; iloc(row: number, col: number): T; iloc(row: number, col?: null | string | number[] | boolean[]): Series<T>; iloc(row: null | string | number[] | boolean[], col: number): Series<T>; iloc(row?: null | string | number[] | boolean[], col?: null | string | number[] | boolean[]): DataFrame<T>; iloc(row?: null | string | numx | boolean[], col?: null | string | numx | boolean[]): T | Series<T> | DataFrame<T>; loc(row: number | string, col: number | string): T | Series<T> | DataFrame<T>; loc(row: number | string, col?: null | locParamArr): Series<T> | DataFrame<T>; loc(row: null | locParamArr, col: number | string): Series<T> | DataFrame<T>; loc(row?: null | locParamArr, col?: null | locParamArr): DataFrame<T>; loc(row?: null | number | string | locParamArr, col?: null | number | string | locParamArr): T | Series<T> | DataFrame<T>; _iset_asymmetric(v1: T[][], l1: Index, l2: Index, i1: numx | boolean[], rpl: T[] | T[][], i2?: numx | boolean[]): null | undefined; _iset_symmetric(ir: undefined | numx | boolean[], ic: undefined | numx | boolean[], rpl: T | T[] | T[][]): null | undefined; _iset(row: undefined | numx | boolean[], col: undefined | numx | boolean[], rpl: T | T[] | T[][]): void; iset(row: number, col: number, rpl: T): void; iset(row: number, rpl: T[]): void; iset(row: number, col: null | string | number[] | boolean[], rpl: T[]): void; iset(row: null | string | number[] | boolean[], col: number, rpl: T[]): void; iset(rpl: T[][]): void; iset(row: null | string | number[] | boolean[], rpl: T[][]): void; iset(row: null | string | number[] | boolean[], col: null | string | number[] | boolean[], rpl: T[][]): void; set(row: number | string, col: number | string, rpl: T | T[] | T[][]): void; set(row: number | string, rpl: T[] | T[][]): void; set(row: number | string, col: null | locParamArr, rpl: T[] | T[][]): void; set(row: null | locParamArr, col: number | string, rpl: T[] | T[][]): void; set(rpl: T[][]): void; set(row: null | locParamArr, rpl: T[][]): void; set(row: null | locParamArr, col: null | locParamArr, rpl: T[][]): void; _push(val: T[], { name, axis }?: PushOptions): void; _series_push(val: Series<T>, options: PushOptions): void; push(val: T[] | Series<T>, options?: PushOptions): void; _insert(i1: number, l1: Index, v1: T[][], rpl: T[], name: number | string): void; insert(idx: number, val: T[], { name, axis }?: PushOptions): void; drop(labels: nsx, axis?: 0 | 1): DataFrame<T>; drop_duplicates(labels: nsx, { keep, axis }?: DropDuplicatesOptions): DataFrame<T>; set_index(label: number | string): DataFrame<T>; set_columns(label: number | string): DataFrame<T>; reset_index(name?: string | number): DataFrame<T>; reset_columns(name?: string | number): DataFrame<T>; to_dict(axis?: 0 | 1): Obj<T>[]; bool(expr: string, axis?: 0 | 1): boolean[]; b(expr: string, options?: QueryOptions): boolean[]; query(col_expr: string): DataFrame<T>; query(col_expr: null | string, row_expr_or_ctx: any): DataFrame<T>; query(col_expr: null | string, row_expr: null | string, ctx: any): DataFrame<T>; q(col_expr: string): DataFrame<T>; q(col_expr: null | string, row_expr_or_ctx: any): DataFrame<T>; q(col_expr: null | string, row_expr: null | string, ctx: any): DataFrame<T>; _iter(indexType: 'index' | 'columns'): Generator<[ ss: Series<T>, key: string | number, i: number ]>; _iter(indexType: 'index' | 'columns', func: (row: Series<T>, key: number | string | ns_arr, i: number) => void): void; iterrows(): Generator<[ row: Series<T>, key: string | number, i: number ]>; iterrows(func: (row: Series<T>, key: number | string | ns_arr, i: number) => void): void; itercols(): Generator<[ col: Series<T>, key: string | number, i: number ]>; itercols(func: (row: Series<T>, key: number | string | ns_arr, i: number) => void): void; groupby(labels?: nsx | null, axis?: 0 | 1): GroupByThen<T>; _groupby(labels: nsx | null, axis?: 0 | 1): GroupByThen<T>; sort_values(labels: nsx | null, { ascending, axis }?: SortOptions): DataFrame<T>; op<K>(opStr: string | ((x: T) => K)): DataFrame<K>; op<K, Z>(opStr: string | ((x: T, y: Z) => K), df: DataFrame<Z> | Z[][]): DataFrame<K>; merge(df: DataFrame<T>, { on, axis }?: MergeOptions): DataFrame<T>; rank(this: DataFrame<number>, options?: DataFrameRankOptions): DataFrame<number>; change(this: DataFrame<number>, op_str: string, { periods, axis }?: DiffOptions): DataFrame<number>; diff(this: DataFrame<number>, { periods, axis }?: DiffOptions): DataFrame<number>; pct_change(this: DataFrame<number>, { periods, axis }?: DiffOptions): DataFrame<number>; rolling(this: DataFrame<number>, window: number, { min_periods, center, closed, step, axis }?: DataFrameRollingOptions): Rolling; isna(): DataFrame<boolean>; to_raw(copy?: boolean): DataFrameRaw<T>; reduce<K>(func: (a: T[]) => K, axis?: 0 | 1): Series<K>; _reduce_num(this: DataFrame<number>, func: (a: number[]) => number, axis: 0 | 1): Series<number>; min(this: DataFrame<number>, axis?: 0 | 1): Series<number>; max(this: DataFrame<number>, axis?: 0 | 1): Series<number>; sum(this: DataFrame<number>, axis?: 0 | 1): Series<number>; mean(this: DataFrame<number>, axis?: 0 | 1): Series<number>; median(this: DataFrame<number>, axis?: 0 | 1): Series<number>; std(this: DataFrame<number>, axis?: 0 | 1): Series<number>; var(this: DataFrame<number>, axis?: 0 | 1): Series<number>; mode(this: DataFrame<number>, axis?: 0 | 1): Series<number>; prod(this: DataFrame<number>, axis?: 0 | 1): Series<number>; } export default DataFrame;