UNPKG

itowns

Version:

A JS/WebGL framework for 3D geospatial data visualization

200 lines (183 loc) 6.4 kB
import { CompressedTextureLoader, RGBAFormat, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGB_ETC1_Format, RGB_S3TC_DXT1_Format, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format } from 'three'; class DDSLoader extends CompressedTextureLoader { constructor(manager) { super(manager); } parse(buffer, loadMipmaps) { const dds = { mipmaps: [], width: 0, height: 0, format: null, mipmapCount: 1 }; // Adapted from @toji's DDS utils // https://github.com/toji/webgl-texture-utils/blob/master/texture-util/dds.js // All values and structures referenced from: // http://msdn.microsoft.com/en-us/library/bb943991.aspx/ // const DDSD_CAPS = 0x1; // const DDSD_HEIGHT = 0x2; // const DDSD_WIDTH = 0x4; // const DDSD_PITCH = 0x8; // const DDSD_PIXELFORMAT = 0x1000; // const DDSD_LINEARSIZE = 0x80000; // const DDSD_DEPTH = 0x800000; // const DDSCAPS_COMPLEX = 0x8; // const DDSCAPS_MIPMAP = 0x400000; // const DDSCAPS_TEXTURE = 0x1000; // const DDSCAPS2_VOLUME = 0x200000; // const DDPF_ALPHAPIXELS = 0x1; // const DDPF_ALPHA = 0x2; // const DDPF_FOURCC = 0x4; // const DDPF_RGB = 0x40; // const DDPF_YUV = 0x200; // const DDPF_LUMINANCE = 0x20000; function fourCCToInt32(value) { return value.charCodeAt(0) + (value.charCodeAt(1) << 8) + (value.charCodeAt(2) << 16) + (value.charCodeAt(3) << 24); } function int32ToFourCC(value) { return String.fromCharCode(value & 0xff, value >> 8 & 0xff, value >> 16 & 0xff, value >> 24 & 0xff); } function loadARGBMip(buffer, dataOffset, width, height) { const dataLength = width * height * 4; const srcBuffer = new Uint8Array(buffer, dataOffset, dataLength); const byteArray = new Uint8Array(dataLength); let dst = 0; let src = 0; for (let y = 0; y < height; y++) { for (let x = 0; x < width; x++) { const b = srcBuffer[src]; src++; const g = srcBuffer[src]; src++; const r = srcBuffer[src]; src++; const a = srcBuffer[src]; src++; byteArray[dst] = r; dst++; //r byteArray[dst] = g; dst++; //g byteArray[dst] = b; dst++; //b byteArray[dst] = a; dst++; //a } } return byteArray; } const FOURCC_DXT1 = fourCCToInt32('DXT1'); const FOURCC_DXT3 = fourCCToInt32('DXT3'); const FOURCC_DXT5 = fourCCToInt32('DXT5'); const FOURCC_ETC1 = fourCCToInt32('ETC1'); const FOURCC_DX10 = fourCCToInt32('DX10'); const headerLengthInt = 31; // The header length in 32 bit ints const extendedHeaderLengthInt = 5; // The extended header length in 32 bit ints // Offsets into the header array // const off_pfFlags = 20; // const off_caps = 27; // const off_caps3 = 29; // const off_caps4 = 30; // If fourCC = DX10, the extended header starts after 32 // Parse header const header = new Int32Array(buffer, 0, headerLengthInt); if (header[0] !== 0x20534444) { console.error('THREE.DDSLoader.parse: Invalid magic number in DDS header.'); return dds; } let blockBytes; const fourCC = header[21]; let isRGBAUncompressed = false; let dataOffset = header[1] + 4; switch (fourCC) { case FOURCC_DXT1: blockBytes = 8; dds.format = RGB_S3TC_DXT1_Format; break; case FOURCC_DXT3: blockBytes = 16; dds.format = RGBA_S3TC_DXT3_Format; break; case FOURCC_DXT5: blockBytes = 16; dds.format = RGBA_S3TC_DXT5_Format; break; case FOURCC_ETC1: blockBytes = 8; dds.format = RGB_ETC1_Format; break; case FOURCC_DX10: dataOffset += extendedHeaderLengthInt * 4; const extendedHeader = new Int32Array(buffer, (headerLengthInt + 1) * 4, extendedHeaderLengthInt); const dxgiFormat = extendedHeader[0]; switch (dxgiFormat) { case 96: { blockBytes = 16; dds.format = RGB_BPTC_SIGNED_Format; break; } case 95: { blockBytes = 16; dds.format = RGB_BPTC_UNSIGNED_Format; break; } default: { console.error('THREE.DDSLoader.parse: Unsupported DXGI_FORMAT code ', dxgiFormat); return dds; } } break; default: if (header[22] === 32 && header[23] & 0xff0000 && header[24] & 0xff00 && header[25] & 0xff && header[26] & 0xff000000) { isRGBAUncompressed = true; blockBytes = 64; dds.format = RGBAFormat; } else { console.error('THREE.DDSLoader.parse: Unsupported FourCC code ', int32ToFourCC(fourCC)); return dds; } } dds.mipmapCount = 1; if (header[2] & 0x20000 && loadMipmaps !== false) { dds.mipmapCount = Math.max(1, header[7]); } const caps2 = header[28]; dds.isCubemap = caps2 & 0x200 ? true : false; if (dds.isCubemap && (!(caps2 & 0x400) || !(caps2 & 0x800) || !(caps2 & 0x1000) || !(caps2 & 0x2000) || !(caps2 & 0x4000) || !(caps2 & 0x8000))) { console.error('THREE.DDSLoader.parse: Incomplete cubemap faces'); return dds; } dds.width = header[4]; dds.height = header[3]; // Extract mipmaps buffers const faces = dds.isCubemap ? 6 : 1; for (let face = 0; face < faces; face++) { let width = dds.width; let height = dds.height; for (let i = 0; i < dds.mipmapCount; i++) { let byteArray, dataLength; if (isRGBAUncompressed) { byteArray = loadARGBMip(buffer, dataOffset, width, height); dataLength = byteArray.length; } else { dataLength = Math.max(4, width) / 4 * Math.max(4, height) / 4 * blockBytes; byteArray = new Uint8Array(buffer, dataOffset, dataLength); } const mipmap = { 'data': byteArray, 'width': width, 'height': height }; dds.mipmaps.push(mipmap); dataOffset += dataLength; width = Math.max(width >> 1, 1); height = Math.max(height >> 1, 1); } } return dds; } } export { DDSLoader };