itowns
Version:
A JS/WebGL framework for 3D geospatial data visualization
477 lines (386 loc) • 15.9 kB
JavaScript
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
Object.defineProperty(exports, "__esModule", {
value: true
});
exports["default"] = void 0;
var THREE = _interopRequireWildcard(require("three"));
// This file has been added and patched after installing the NPM modules (via NPM script 'prepare')
var threeExamples = {};
/**
* @author mrdoob / http://mrdoob.com/
*/
threeExamples.BufferGeometryUtils = {
computeTangents: function computeTangents(geometry) {
var index = geometry.index;
var attributes = geometry.attributes; // based on http://www.terathon.com/code/tangent.html
// (per vertex tangents)
if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
console.warn('THREE.BufferGeometry: Missing required attributes (index, position, normal or uv) in BufferGeometry.computeTangents()');
return;
}
var indices = index.array;
var positions = attributes.position.array;
var normals = attributes.normal.array;
var uvs = attributes.uv.array;
var nVertices = positions.length / 3;
if (attributes.tangent === undefined) {
geometry.addAttribute('tangent', new THREE.BufferAttribute(new Float32Array(4 * nVertices), 4));
}
var tangents = attributes.tangent.array;
var tan1 = [],
tan2 = [];
for (var i = 0; i < nVertices; i++) {
tan1[i] = new THREE.Vector3();
tan2[i] = new THREE.Vector3();
}
var vA = new THREE.Vector3(),
vB = new THREE.Vector3(),
vC = new THREE.Vector3(),
uvA = new THREE.Vector2(),
uvB = new THREE.Vector2(),
uvC = new THREE.Vector2(),
sdir = new THREE.Vector3(),
tdir = new THREE.Vector3();
function handleTriangle(a, b, c) {
vA.fromArray(positions, a * 3);
vB.fromArray(positions, b * 3);
vC.fromArray(positions, c * 3);
uvA.fromArray(uvs, a * 2);
uvB.fromArray(uvs, b * 2);
uvC.fromArray(uvs, c * 2);
var x1 = vB.x - vA.x;
var x2 = vC.x - vA.x;
var y1 = vB.y - vA.y;
var y2 = vC.y - vA.y;
var z1 = vB.z - vA.z;
var z2 = vC.z - vA.z;
var s1 = uvB.x - uvA.x;
var s2 = uvC.x - uvA.x;
var t1 = uvB.y - uvA.y;
var t2 = uvC.y - uvA.y;
var r = 1.0 / (s1 * t2 - s2 * t1);
sdir.set((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, (t2 * z1 - t1 * z2) * r);
tdir.set((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r);
tan1[a].add(sdir);
tan1[b].add(sdir);
tan1[c].add(sdir);
tan2[a].add(tdir);
tan2[b].add(tdir);
tan2[c].add(tdir);
}
var groups = geometry.groups;
if (groups.length === 0) {
groups = [{
start: 0,
count: indices.length
}];
}
for (var i = 0, il = groups.length; i < il; ++i) {
var group = groups[i];
var start = group.start;
var count = group.count;
for (var j = start, jl = start + count; j < jl; j += 3) {
handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
}
}
var tmp = new THREE.Vector3(),
tmp2 = new THREE.Vector3();
var n = new THREE.Vector3(),
n2 = new THREE.Vector3();
var w, t, test;
function handleVertex(v) {
n.fromArray(normals, v * 3);
n2.copy(n);
t = tan1[v]; // Gram-Schmidt orthogonalize
tmp.copy(t);
tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
tmp2.crossVectors(n2, t);
test = tmp2.dot(tan2[v]);
w = test < 0.0 ? -1.0 : 1.0;
tangents[v * 4] = tmp.x;
tangents[v * 4 + 1] = tmp.y;
tangents[v * 4 + 2] = tmp.z;
tangents[v * 4 + 3] = w;
}
for (var i = 0, il = groups.length; i < il; ++i) {
var group = groups[i];
var start = group.start;
var count = group.count;
for (var j = start, jl = start + count; j < jl; j += 3) {
handleVertex(indices[j + 0]);
handleVertex(indices[j + 1]);
handleVertex(indices[j + 2]);
}
}
},
/**
* @param {Array<THREE.BufferGeometry>} geometries
* @param {Boolean} useGroups
* @return {THREE.BufferGeometry}
*/
mergeBufferGeometries: function mergeBufferGeometries(geometries, useGroups) {
var isIndexed = geometries[0].index !== null;
var attributesUsed = new Set(Object.keys(geometries[0].attributes));
var morphAttributesUsed = new Set(Object.keys(geometries[0].morphAttributes));
var attributes = {};
var morphAttributes = {};
var mergedGeometry = new THREE.BufferGeometry();
var offset = 0;
for (var i = 0; i < geometries.length; ++i) {
var geometry = geometries[i]; // ensure that all geometries are indexed, or none
if (isIndexed !== (geometry.index !== null)) return null; // gather attributes, exit early if they're different
for (var name in geometry.attributes) {
if (!attributesUsed.has(name)) return null;
if (attributes[name] === undefined) attributes[name] = [];
attributes[name].push(geometry.attributes[name]);
} // gather morph attributes, exit early if they're different
for (var name in geometry.morphAttributes) {
if (!morphAttributesUsed.has(name)) return null;
if (morphAttributes[name] === undefined) morphAttributes[name] = [];
morphAttributes[name].push(geometry.morphAttributes[name]);
} // gather .userData
mergedGeometry.userData.mergedUserData = mergedGeometry.userData.mergedUserData || [];
mergedGeometry.userData.mergedUserData.push(geometry.userData);
if (useGroups) {
var count;
if (isIndexed) {
count = geometry.index.count;
} else if (geometry.attributes.position !== undefined) {
count = geometry.attributes.position.count;
} else {
return null;
}
mergedGeometry.addGroup(offset, count, i);
offset += count;
}
} // merge indices
if (isIndexed) {
var indexOffset = 0;
var mergedIndex = [];
for (var i = 0; i < geometries.length; ++i) {
var index = geometries[i].index;
for (var j = 0; j < index.count; ++j) {
mergedIndex.push(index.getX(j) + indexOffset);
}
indexOffset += geometries[i].attributes.position.count;
}
mergedGeometry.setIndex(mergedIndex);
} // merge attributes
for (var name in attributes) {
var mergedAttribute = this.mergeBufferAttributes(attributes[name]);
if (!mergedAttribute) return null;
mergedGeometry.addAttribute(name, mergedAttribute);
} // merge morph attributes
for (var name in morphAttributes) {
var numMorphTargets = morphAttributes[name][0].length;
if (numMorphTargets === 0) break;
mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {};
mergedGeometry.morphAttributes[name] = [];
for (var i = 0; i < numMorphTargets; ++i) {
var morphAttributesToMerge = [];
for (var j = 0; j < morphAttributes[name].length; ++j) {
morphAttributesToMerge.push(morphAttributes[name][j][i]);
}
var mergedMorphAttribute = this.mergeBufferAttributes(morphAttributesToMerge);
if (!mergedMorphAttribute) return null;
mergedGeometry.morphAttributes[name].push(mergedMorphAttribute);
}
}
return mergedGeometry;
},
/**
* @param {Array<THREE.BufferAttribute>} attributes
* @return {THREE.BufferAttribute}
*/
mergeBufferAttributes: function mergeBufferAttributes(attributes) {
var TypedArray;
var itemSize;
var normalized;
var arrayLength = 0;
for (var i = 0; i < attributes.length; ++i) {
var attribute = attributes[i];
if (attribute.isInterleavedBufferAttribute) return null;
if (TypedArray === undefined) TypedArray = attribute.array.constructor;
if (TypedArray !== attribute.array.constructor) return null;
if (itemSize === undefined) itemSize = attribute.itemSize;
if (itemSize !== attribute.itemSize) return null;
if (normalized === undefined) normalized = attribute.normalized;
if (normalized !== attribute.normalized) return null;
arrayLength += attribute.array.length;
}
var array = new TypedArray(arrayLength);
var offset = 0;
for (var i = 0; i < attributes.length; ++i) {
array.set(attributes[i].array, offset);
offset += attributes[i].array.length;
}
return new THREE.BufferAttribute(array, itemSize, normalized);
},
/**
* @param {Array<THREE.BufferAttribute>} attributes
* @return {Array<THREE.InterleavedBufferAttribute>}
*/
interleaveAttributes: function interleaveAttributes(attributes) {
// Interleaves the provided attributes into an InterleavedBuffer and returns
// a set of InterleavedBufferAttributes for each attribute
var TypedArray;
var arrayLength = 0;
var stride = 0; // calculate the the length and type of the interleavedBuffer
for (var i = 0, l = attributes.length; i < l; ++i) {
var attribute = attributes[i];
if (TypedArray === undefined) TypedArray = attribute.array.constructor;
if (TypedArray !== attribute.array.constructor) {
console.warn('AttributeBuffers of different types cannot be interleaved');
return null;
}
arrayLength += attribute.array.length;
stride += attribute.itemSize;
} // Create the set of buffer attributes
var interleavedBuffer = new THREE.InterleavedBuffer(new TypedArray(arrayLength), stride);
var offset = 0;
var res = [];
var getters = ['getX', 'getY', 'getZ', 'getW'];
var setters = ['setX', 'setY', 'setZ', 'setW'];
for (var j = 0, l = attributes.length; j < l; j++) {
var attribute = attributes[j];
var itemSize = attribute.itemSize;
var count = attribute.count;
var iba = new THREE.InterleavedBufferAttribute(interleavedBuffer, itemSize, offset, attribute.normalized);
res.push(iba);
offset += itemSize; // Move the data for each attribute into the new interleavedBuffer
// at the appropriate offset
for (var c = 0; c < count; c++) {
for (var k = 0; k < itemSize; k++) {
iba[setters[k]](c, attribute[getters[k]](c));
}
}
}
return res;
},
/**
* @param {Array<THREE.BufferGeometry>} geometry
* @return {number}
*/
estimateBytesUsed: function estimateBytesUsed(geometry) {
// Return the estimated memory used by this geometry in bytes
// Calculate using itemSize, count, and BYTES_PER_ELEMENT to account
// for InterleavedBufferAttributes.
var mem = 0;
for (var name in geometry.attributes) {
var attr = geometry.getAttribute(name);
mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT;
}
var indices = geometry.getIndex();
mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0;
return mem;
},
/**
* @param {THREE.BufferGeometry} geometry
* @param {number} tolerance
* @return {THREE.BufferGeometry>}
*/
mergeVertices: function mergeVertices(geometry) {
var tolerance = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 1e-4;
tolerance = Math.max(tolerance, Number.EPSILON); // Generate an index buffer if the geometry doesn't have one, or optimize it
// if it's already available.
var hashToIndex = {};
var indices = geometry.getIndex();
var positions = geometry.getAttribute('position');
var vertexCount = indices ? indices.count : positions.count; // next value for triangle indices
var nextIndex = 0; // attributes and new attribute arrays
var attributeNames = Object.keys(geometry.attributes);
var attrArrays = {};
var morphAttrsArrays = {};
var newIndices = [];
var getters = ['getX', 'getY', 'getZ', 'getW']; // initialize the arrays
for (var i = 0, l = attributeNames.length; i < l; i++) {
var name = attributeNames[i];
attrArrays[name] = [];
var morphAttr = geometry.morphAttributes[name];
if (morphAttr) {
morphAttrsArrays[name] = new Array(morphAttr.length).fill().map(function () {
return [];
});
}
} // convert the error tolerance to an amount of decimal places to truncate to
var decimalShift = Math.log10(1 / tolerance);
var shiftMultiplier = Math.pow(10, decimalShift);
for (var i = 0; i < vertexCount; i++) {
var index = indices ? indices.getX(i) : i; // Generate a hash for the vertex attributes at the current index 'i'
var hash = '';
for (var j = 0, l = attributeNames.length; j < l; j++) {
var name = attributeNames[j];
var attribute = geometry.getAttribute(name);
var itemSize = attribute.itemSize;
for (var k = 0; k < itemSize; k++) {
// double tilde truncates the decimal value
hash += "".concat(~~(attribute[getters[k]](index) * shiftMultiplier), ",");
}
} // Add another reference to the vertex if it's already
// used by another index
if (hash in hashToIndex) {
newIndices.push(hashToIndex[hash]);
} else {
// copy data to the new index in the attribute arrays
for (var j = 0, l = attributeNames.length; j < l; j++) {
var name = attributeNames[j];
var attribute = geometry.getAttribute(name);
var morphAttr = geometry.morphAttributes[name];
var itemSize = attribute.itemSize;
var newarray = attrArrays[name];
var newMorphArrays = morphAttrsArrays[name];
for (var k = 0; k < itemSize; k++) {
var getterFunc = getters[k];
newarray.push(attribute[getterFunc](index));
if (morphAttr) {
for (var m = 0, ml = morphAttr.length; m < ml; m++) {
newMorphArrays[m].push(morphAttr[m][getterFunc](index));
}
}
}
}
hashToIndex[hash] = nextIndex;
newIndices.push(nextIndex);
nextIndex++;
}
} // Generate typed arrays from new attribute arrays and update
// the attributeBuffers
var result = geometry.clone();
for (var i = 0, l = attributeNames.length; i < l; i++) {
var name = attributeNames[i];
var oldAttribute = geometry.getAttribute(name);
var attribute;
var buffer = new oldAttribute.array.constructor(attrArrays[name]);
if (oldAttribute.isInterleavedBufferAttribute) {
attribute = new THREE.BufferAttribute(buffer, oldAttribute.itemSize, oldAttribute.itemSize);
} else {
attribute = geometry.getAttribute(name).clone();
attribute.setArray(buffer);
}
result.addAttribute(name, attribute); // Update the attribute arrays
if (name in morphAttrsArrays) {
for (var j = 0; j < morphAttrsArrays[name].length; j++) {
var morphAttribute = geometry.morphAttributes[name][j].clone();
morphAttribute.setArray(new morphAttribute.array.constructor(morphAttrsArrays[name][j]));
result.morphAttributes[name][j] = morphAttribute;
}
}
} // Generate an index buffer typed array
var cons = Uint8Array;
if (newIndices.length >= Math.pow(2, 8)) cons = Uint16Array;
if (newIndices.length >= Math.pow(2, 16)) cons = Uint32Array;
var newIndexBuffer = new cons(newIndices);
var newIndices = null;
if (indices === null) {
newIndices = new THREE.BufferAttribute(newIndexBuffer, 1);
} else {
newIndices = geometry.getIndex().clone();
newIndices.setArray(newIndexBuffer);
}
result.setIndex(newIndices);
return result;
}
};
var _default = threeExamples.BufferGeometryUtils;
exports["default"] = _default;