UNPKG

itertools-ts

Version:

Extended itertools port for TypeScript and JavaScript. Provides a huge set of functions for working with iterable collections (including async ones)

1,232 lines 45.2 kB
"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g = Object.create((typeof Iterator === "function" ? Iterator : Object).prototype); return g.next = verb(0), g["throw"] = verb(1), g["return"] = verb(2), typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (g && (g = 0, op[0] && (_ = 0)), _) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var __asyncValues = (this && this.__asyncValues) || function (o) { if (!Symbol.asyncIterator) throw new TypeError("Symbol.asyncIterator is not defined."); var m = o[Symbol.asyncIterator], i; return m ? m.call(o) : (o = typeof __values === "function" ? __values(o) : o[Symbol.iterator](), i = {}, verb("next"), verb("throw"), verb("return"), i[Symbol.asyncIterator] = function () { return this; }, i); function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; } function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); } }; var __await = (this && this.__await) || function (v) { return this instanceof __await ? (this.v = v, this) : new __await(v); } var __asyncGenerator = (this && this.__asyncGenerator) || function (thisArg, _arguments, generator) { if (!Symbol.asyncIterator) throw new TypeError("Symbol.asyncIterator is not defined."); var g = generator.apply(thisArg, _arguments || []), i, q = []; return i = Object.create((typeof AsyncIterator === "function" ? AsyncIterator : Object).prototype), verb("next"), verb("throw"), verb("return", awaitReturn), i[Symbol.asyncIterator] = function () { return this; }, i; function awaitReturn(f) { return function (v) { return Promise.resolve(v).then(f, reject); }; } function verb(n, f) { if (g[n]) { i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; if (f) i[n] = f(i[n]); } } function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } } function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); } function fulfill(value) { resume("next", value); } function reject(value) { resume("throw", value); } function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); } }; var __read = (this && this.__read) || function (o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; }; var __spreadArray = (this && this.__spreadArray) || function (to, from, pack) { if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) { if (ar || !(i in from)) { if (!ar) ar = Array.prototype.slice.call(from, 0, i); ar[i] = from[i]; } } return to.concat(ar || Array.prototype.slice.call(from)); }; Object.defineProperty(exports, "__esModule", { value: true }); exports.AsyncStream = void 0; var transform_1 = require("./transform"); var single_1 = require("./single"); var multi_1 = require("./multi"); var math_1 = require("./math"); var set_1 = require("./set"); var combinatorics_1 = require("./combinatorics"); var reduce_1 = require("./reduce"); var summary_1 = require("./summary"); var index_1 = require("./index"); /** * Provides fluent interface for working with async iterables. */ var AsyncStream = /** @class */ (function () { /** * Stream constructor. * * @param iterable */ function AsyncStream(iterable) { this.data = iterable; } /** * Creates iterable instance with fluent interface. * * @param data */ AsyncStream.of = function (data) { return new AsyncStream((0, transform_1.toAsyncIterable)(data)); }; /** * Creates iterable instance with fluent interface from empty iterable source. */ AsyncStream.ofEmpty = function () { return new AsyncStream((0, transform_1.toAsyncIterable)([])); }; /** * Creates iterable instance with fluent interface from infinite count iterable. * * @param start (optional, default 1) * @param step (optional, default 1) */ AsyncStream.ofCount = function (start, step) { if (start === void 0) { start = 1; } if (step === void 0) { step = 1; } return new AsyncStream((0, transform_1.toAsyncIterable)(index_1.infinite.count(start, step))); }; /** * Creates iterable instance with fluent interface from infinite collection items repeating. * * @param iterable */ AsyncStream.ofCycle = function (iterable) { return new AsyncStream(index_1.infinite.cycleAsync(iterable)); }; /** * Creates iterable instance with fluent interface from infinite item repeating. * * @param item */ AsyncStream.ofRepeat = function (item) { return new AsyncStream((0, transform_1.toAsyncIterable)(index_1.infinite.repeat(item))); }; /** * Iterate stream collection with another iterable collections simultaneously. * * Make an iterator that aggregates items from multiple iterators. * Similar to Python's zip function. * * For uneven lengths, iterations stops when the shortest iterable is exhausted. * * @param iterables * * @see multi.zipAsync */ AsyncStream.prototype.zipWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = multi_1.zipAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Iterate stream collection with another iterable collections simultaneously. * * Make an iterator that aggregates items from multiple iterators. * Similar to Python's zip_longest function. * * Iteration continues until the longest iterable is exhausted. * For uneven lengths, the exhausted iterables will produce `filler` value for the remaining iterations. * * @param filler * @param iterables * * @see multi.zipLongestAsync */ AsyncStream.prototype.zipFilledWith = function (filler) { var iterables = []; for (var _i = 1; _i < arguments.length; _i++) { iterables[_i - 1] = arguments[_i]; } this.data = multi_1.zipFilledAsync.apply(void 0, __spreadArray([filler, this.data], __read(iterables), false)); return this; }; /** * Iterate stream collection with another iterable collections simultaneously. * * Make an iterator that aggregates items from multiple iterators. * Similar to Python's zip_longest function. * * Iteration continues until the longest iterable is exhausted. * For uneven lengths, the exhausted iterables will produce `undefined` for the remaining iterations. * * @param iterables * * @see multi.zipLongestAsync */ AsyncStream.prototype.zipLongestWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = multi_1.zipLongestAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Iterate stream collection with another iterable collections of equal lengths simultaneously. * * Works like multi.zip() method but throws LengthException if lengths not equal, * i.e., at least one iterator ends before the others. * * @param iterables * * @see multi.zipEqualAsync */ AsyncStream.prototype.zipEqualWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = multi_1.zipEqualAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Chain stream collection withs given iterables together into a single iteration. * * Makes a single continuous sequence out of multiple sequences. * * @param iterables * * @see multi.chainAsync */ AsyncStream.prototype.chainWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = multi_1.chainAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Return overlapped chunks of elements from iterable source. * * Chunk size must be at least 1. * * Overlap size must be less than chunk size. * * @param chunkSize * @param overlapSize * @param includeIncompleteTail * * @see single.chunkwiseOverlapAsync */ AsyncStream.prototype.chunkwiseOverlap = function (chunkSize, overlapSize, includeIncompleteTail) { if (includeIncompleteTail === void 0) { includeIncompleteTail = true; } this.data = (0, single_1.chunkwiseOverlapAsync)(this.data, chunkSize, overlapSize, includeIncompleteTail); return this; }; /** * Return chunks of elements from iterable source. * * Chunk size must be at least 1. * * @param chunkSize * * @see single.chunkwiseAsync */ AsyncStream.prototype.chunkwise = function (chunkSize) { this.data = (0, single_1.chunkwiseAsync)(this.data, chunkSize); return this; }; /** * Compress an iterable source by filtering out data that is not selected. * * Selectors indicate which data. True value selects item. False value filters out data. * * @param selectors * * @see single.compressAsync */ AsyncStream.prototype.compress = function (selectors) { this.data = (0, single_1.compressAsync)(this.data, selectors); return this; }; /** * Drop elements from the iterable source while the predicate function is true. * * Once the predicate function returns false once, all remaining elements are returned. * * @param predicate * * @see single.dropWhileAsync */ AsyncStream.prototype.dropWhile = function (predicate) { this.data = (0, single_1.dropWhileAsync)(this.data, predicate); return this; }; /** * Filter out elements from the iterable source only returning elements where there predicate function is true. * * @param predicate * * @see single.filterAsync */ AsyncStream.prototype.filter = function (predicate) { this.data = (0, single_1.filterAsync)(this.data, predicate); return this; }; /** * Enumerates items of given collection. * * @see single.enumerateAsync */ AsyncStream.prototype.enumerate = function () { this.data = (0, single_1.enumerateAsync)(this.data); return this; }; /** * Iterates keys from the collection of key-value pairs. * * @see single.keysAsync */ AsyncStream.prototype.keys = function () { this.data = (0, single_1.keysAsync)(this.data); return this; }; /** * Limit iteration to a max size limit. * * @param count * * @see single.limitAsync */ AsyncStream.prototype.limit = function (count) { this.data = (0, single_1.limitAsync)(this.data, count); return this; }; /** * Map a function onto every element of the stream * * @param mapper * * @see single.mapAsync */ AsyncStream.prototype.map = function (mapper) { this.data = (0, single_1.mapAsync)(this.data, mapper); return this; }; /** * Returns a new collection formed by applying a given callback function * to each element of the stream, and then flattening the result by one level. * * @param mapper * * @see single.flatMapAsync */ AsyncStream.prototype.flatMap = function (mapper) { this.data = (0, single_1.flatMapAsync)(this.data, mapper); return this; }; /** * Flatten a stream. * * @param dimensions * * @see single.flattenAsync */ AsyncStream.prototype.flatten = function (dimensions) { if (dimensions === void 0) { dimensions = Infinity; } this.data = (0, single_1.flattenAsync)(this.data, dimensions); return this; }; /** * Group stream data by a common data element. * * Iterate pairs of group name and collection of grouped items. * * Collection of grouped items may be an array or an object (depends on presence of `itemKeyFunction` param). * * The `groupKeyFunction` determines the key (or multiple keys) to group elements by. * * The `itemKeyFunction` (optional) determines the key of element in group. * * @param groupKeyFunction * @param itemKeyFunction * * @see single.groupByAsync */ AsyncStream.prototype.groupBy = function (groupKeyFunction, itemKeyFunction) { this.data = (0, single_1.groupByAsync)(this.data, groupKeyFunction, itemKeyFunction); return this; }; /** * Return pairs of elements from iterable source. * * Produces empty generator if given collection contains less than 2 elements. * * @see single.pairwiseAsync */ AsyncStream.prototype.pairwise = function () { this.data = (0, single_1.pairwiseAsync)(this.data); return this; }; /** * Accumulate the running average (mean) over the stream. * * @param initialValue (Optional) If provided, the running average leads off with the initial value. * * @see math.runningAverageAsync */ AsyncStream.prototype.runningAverage = function (initialValue) { this.data = (0, math_1.runningAverageAsync)(this.data, initialValue); return this; }; /** * Accumulate the running difference over the stream. * * @param initialValue (Optional) If provided, the running difference leads off with the initial value. * * @see math.runningDifferenceAsync */ AsyncStream.prototype.runningDifference = function (initialValue) { this.data = (0, math_1.runningDifferenceAsync)(this.data, initialValue); return this; }; /** * Accumulate the running max over the stream. * * @param initialValue (Optional) If provided, the running max leads off with the initial value. * * @see math.runningMaxAsync */ AsyncStream.prototype.runningMax = function (initialValue) { this.data = (0, math_1.runningMaxAsync)(this.data, initialValue); return this; }; /** * Accumulate the running min over the stream. * * @param initialValue (Optional) If provided, the running min leads off with the initial value. * * @see math.runningMinAsync */ AsyncStream.prototype.runningMin = function (initialValue) { this.data = (0, math_1.runningMinAsync)(this.data, initialValue); return this; }; /** * Accumulate the running product over the stream. * * @param initialValue (Optional) If provided, the running product leads off with the initial value. * * @see math.runningProductAsync */ AsyncStream.prototype.runningProduct = function (initialValue) { this.data = (0, math_1.runningProductAsync)(this.data, initialValue); return this; }; /** * Accumulate the running total over the stream. * * @param initialValue (Optional) If provided, the running total leads off with the initial value. * * @see math.runningTotalAsync */ AsyncStream.prototype.runningTotal = function (initialValue) { this.data = (0, math_1.runningTotalAsync)(this.data, initialValue); return this; }; /** * Skip n elements in the stream after optional offset. * * @param count * @param offset * * @see single.skipAsync */ AsyncStream.prototype.skip = function (count, offset) { if (offset === void 0) { offset = 0; } this.data = (0, single_1.skipAsync)(this.data, count, offset); return this; }; /** * Extract a slice of the stream. * * @param start * @param count * @param step * * @see single.sliceAsync */ AsyncStream.prototype.slice = function (start, count, step) { if (start === void 0) { start = 0; } if (step === void 0) { step = 1; } this.data = (0, single_1.sliceAsync)(this.data, start, count, step); return this; }; /** * Return elements from the iterable source as long as the predicate is true. * * If no predicate is provided, the boolean value of the data is used. * * @param predicate * * @see single.takeWhileAsync */ AsyncStream.prototype.takeWhile = function (predicate) { this.data = (0, single_1.takeWhileAsync)(this.data, predicate); return this; }; /** * Iterates values from the collection of key-value pairs. * * @see single.valuesAsync */ AsyncStream.prototype.values = function () { this.data = (0, single_1.valuesAsync)(this.data); return this; }; /** * Sorts the stream. * * If comparator is `undefined`, then elements of the iterable source must be comparable. * * @see single.sort */ AsyncStream.prototype.sort = function (comparator) { this.data = (0, single_1.sortAsync)(this.data, comparator); return this; }; /** * Filter out elements from the iterable source only returning unique elements. * * @param compareBy * * @see set.distinctAsync */ AsyncStream.prototype.distinct = function (compareBy) { this.data = (0, set_1.distinctAsync)(this.data, compareBy); return this; }; /** * Iterates the intersection of iterable source and given iterables. * * Always treats different instances of objects and arrays as unequal. * * @param iterables * * @see set.intersectionAsync */ AsyncStream.prototype.intersectionWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = set_1.intersectionAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Iterates partial intersection of iterable source and given iterables. * * Always treats different instances of objects and arrays as unequal. * * @param minIntersectionCount * @param iterables * * @see set.partialIntersectionAsync */ AsyncStream.prototype.partialIntersectionWith = function (minIntersectionCount) { var iterables = []; for (var _i = 1; _i < arguments.length; _i++) { iterables[_i - 1] = arguments[_i]; } this.data = set_1.partialIntersectionAsync.apply(void 0, __spreadArray([minIntersectionCount, this.data], __read(iterables), false)); return this; }; /** * Iterates the symmetric difference of iterable source and given iterables. * * Always treats different instances of objects and arrays as unequal. * * @param iterables * * @see set.symmetricDifferenceAsync */ AsyncStream.prototype.symmetricDifferenceWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = set_1.symmetricDifferenceAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Iterates union of iterable source and given iterables. * * Always treats different instances of objects and arrays as unequal. * * @param iterables * * @see set.unionAsync */ AsyncStream.prototype.unionWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = set_1.unionAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Iterates cartesian product of iterable source and given iterables. * * @param iterables * * @see combinatorics.cartesianProductAsync */ AsyncStream.prototype.cartesianProductWith = function () { var iterables = []; for (var _i = 0; _i < arguments.length; _i++) { iterables[_i] = arguments[_i]; } this.data = combinatorics_1.cartesianProductAsync.apply(void 0, __spreadArray([this.data], __read(iterables), false)); return this; }; /** * Iterates all permutations of iterable source. * * @param length * * @see combinatorics.permutations */ AsyncStream.prototype.permutations = function (length) { this.data = (0, combinatorics_1.permutationsAsync)(this.data, length); return this; }; /** * Iterates all combinations of iterable source. * * @param length * * @see combinatorics.combinations */ AsyncStream.prototype.combinations = function (length) { this.data = (0, combinatorics_1.combinationsAsync)(this.data, length); return this; }; /** * Peek at each element between other Stream operations to do some action without modifying the stream. * * Useful for debugging purposes. * * @param callback */ AsyncStream.prototype.peek = function (callback) { var _this = this; var _a = __read((0, transform_1.teeAsync)(this.data, 2), 2), data = _a[0], peekable = _a[1]; this.data = data; (function () { return __awaiter(_this, void 0, void 0, function () { var _a, peekable_1, peekable_1_1, element, e_1_1; var _b, e_1, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: _e.trys.push([0, 5, 6, 11]); _a = true, peekable_1 = __asyncValues(peekable); _e.label = 1; case 1: return [4 /*yield*/, peekable_1.next()]; case 2: if (!(peekable_1_1 = _e.sent(), _b = peekable_1_1.done, !_b)) return [3 /*break*/, 4]; _d = peekable_1_1.value; _a = false; element = _d; callback(element); _e.label = 3; case 3: _a = true; return [3 /*break*/, 1]; case 4: return [3 /*break*/, 11]; case 5: e_1_1 = _e.sent(); e_1 = { error: e_1_1 }; return [3 /*break*/, 11]; case 6: _e.trys.push([6, , 9, 10]); if (!(!_a && !_b && (_c = peekable_1.return))) return [3 /*break*/, 8]; return [4 /*yield*/, _c.call(peekable_1)]; case 7: _e.sent(); _e.label = 8; case 8: return [3 /*break*/, 10]; case 9: if (e_1) throw e_1.error; return [7 /*endfinally*/]; case 10: return [7 /*endfinally*/]; case 11: return [2 /*return*/]; } }); }); })(); return this; }; /** * Peek at the entire stream between other Stream operations to do some action without modifying the stream. * * Useful for debugging purposes. * * @param callback */ AsyncStream.prototype.peekStream = function (callback) { var _a = __read((0, transform_1.teeAsync)(this.data, 2), 2), data = _a[0], peekable = _a[1]; this.data = data; callback(AsyncStream.of(peekable)); return this; }; /** * Reduces iterable source like `array.reduce()` function. * * @param reducer * @param initialValue * * @see reduce.toValueAsync */ AsyncStream.prototype.toValue = function (reducer, initialValue) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toValueAsync)(this, reducer, initialValue)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces iterable source to the mean average of its items. * * Returns `undefined` if iterable source is empty. * * @see reduce.toAverageAsync */ AsyncStream.prototype.toAverage = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toAverageAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces iterable source to its length. * * @see reduce.toCountAsync */ AsyncStream.prototype.toCount = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toCountAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces iterable source to its max value. * * Callable param `compareBy` must return comparable value. * * If `compareBy` is not proposed then items of iterable source must be comparable. * * Returns `undefined` if iterable source is empty. * * @param compareBy * * @see reduce.toMaxAsync */ AsyncStream.prototype.toMax = function (compareBy) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toMaxAsync)(this, compareBy)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces iterable source to its min value. * * Callable param `compareBy` must return comparable value. * * If `compareBy` is not proposed then items of iterable source must be comparable. * * Returns `undefined` if iterable source is empty. * * @param compareBy * * @see reduce.toMinAsync */ AsyncStream.prototype.toMin = function (compareBy) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toMinAsync)(this, compareBy)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces given collection to array of its upper and lower bounds. * * Callable param `compareBy` must return comparable value. * * If `compareBy` is not proposed then items of given collection must be comparable. * * Returns `[undefined, undefined]` if given collection is empty. * * @param compareBy * * @see reduce.toMinMaxAsync */ AsyncStream.prototype.toMinMax = function (compareBy) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toMinMaxAsync)(this, compareBy)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns the first element of stream. * * @throws LengthError if stream is empty. * * @see reduce.toFirstAsync */ AsyncStream.prototype.toFirst = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toFirstAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns the first and last elements of stream. * * @throws LengthError if stream is empty. * * @see reduce.toFirstAndLastAsync */ AsyncStream.prototype.toFirstAndLast = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toFirstAndLastAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns the first element of stream. * * @throws LengthError if stream is empty. * * @see reduce.toLastAsync */ AsyncStream.prototype.toLast = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toLastAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces iterable source to the sum of its items. * * @see reduce.toSumAsync */ AsyncStream.prototype.toSum = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toSumAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces iterable source to the product of its items. * * Returns `undefined` if iterable source is empty. * * @see reduce.toProductAsync */ AsyncStream.prototype.toProduct = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toProductAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Reduces given collection to its range. * * Returns 0 if given collection is empty. * * @see reduce.toRangeAsync */ AsyncStream.prototype.toRange = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, reduce_1.toRangeAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if all elements of stream match the predicate function. * * For empty stream returns true. * * @param predicate * * @see summary.allMatchAsync */ AsyncStream.prototype.allMatch = function (predicate) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, summary_1.allMatchAsync)(this, predicate)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if all elements of stream are unique. * * For empty stream returns true. * * Considers different instances of data containers to be different, even if they have the same content. * * @see summary.allUniqueAsync */ AsyncStream.prototype.allUnique = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, summary_1.allUniqueAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if any element of stream matches the predicate function. * * For empty stream returns false. * * @param predicate * * @see summary.anyMatchAsync */ AsyncStream.prototype.anyMatch = function (predicate) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, summary_1.anyMatchAsync)(this, predicate)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if exactly n items in the async iterable are true where the predicate function is true. * * Default predicate if not provided is the boolean value of each data item. * * @param n * @param predicate * * @see summary.exactlyNAsync */ AsyncStream.prototype.exactlyN = function (n, predicate) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, (0, summary_1.exactlyNAsync)(this, n, predicate)]; }); }); }; /** * Returns true if stream is sorted in ascending order; otherwise false. * * Items of stream source must be comparable. * * Also returns true if stream is empty or has only one element. * * @see summary.isSortedAsync */ AsyncStream.prototype.isSorted = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, summary_1.isSortedAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if stream is sorted in descending order; otherwise false. * * Items of stream source must be comparable. * * Also returns true if stream is empty or has only one element. * * @see summary.isReversedAsync */ AsyncStream.prototype.isReversed = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, summary_1.isReversedAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if no element of stream matches the predicate function. * * For empty stream returns true. * * @param predicate * * @see summary.noneMatchAsync */ AsyncStream.prototype.noneMatch = function (predicate) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, summary_1.noneMatchAsync)(this, predicate)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if stream collection and all given collections are the same. * * For empty collections list returns true. * * @param collections * * @see summary.sameAsync */ AsyncStream.prototype.sameWith = function () { var collections = []; for (var _i = 0; _i < arguments.length; _i++) { collections[_i] = arguments[_i]; } return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, summary_1.sameAsync.apply(void 0, __spreadArray([this.data], __read(collections), false))]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Returns true if stream collection and all given collections have the same lengths. * * For empty collections list returns true. * * @param collections * * @see summary.sameCountAsync */ AsyncStream.prototype.sameCountWith = function () { var collections = []; for (var _i = 0; _i < arguments.length; _i++) { collections[_i] = arguments[_i]; } return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, summary_1.sameCountAsync.apply(void 0, __spreadArray([this.data], __read(collections), false))]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Return several independent async streams from current stream. * * Once a tee() has been created, the original iterable should not be used anywhere else; * otherwise, the iterable could get advanced without the tee objects being informed. * * This tool may require significant auxiliary storage (depending on how much temporary data needs to be stored). * In general, if one iterator uses most or all of the data before another iterator starts, * it is faster to use toArray() instead of tee(). * * @param count * * @see transform.teeAsync */ AsyncStream.prototype.tee = function (count) { return (0, transform_1.teeAsync)(this.data, count).map(function (iterable) { return new AsyncStream(iterable); }); }; /** * Converts stream to Array. * * @see transform.toArrayAsync */ AsyncStream.prototype.toArray = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, transform_1.toArrayAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Converts stream to Map. * * Stream collection must contain only key-value pairs as elements. * * @see transform.toMapAsync */ AsyncStream.prototype.toMap = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, transform_1.toMapAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Converts stream to Set. * * @see transform.toSetAsync */ AsyncStream.prototype.toSet = function () { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, transform_1.toSetAsync)(this)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }; /** * Aggregated iterator. */ AsyncStream.prototype[Symbol.asyncIterator] = function () { return __asyncGenerator(this, arguments, function _a() { var _b, _c, _d, datum, e_2_1; var _e, e_2, _f, _g; return __generator(this, function (_h) { switch (_h.label) { case 0: _h.trys.push([0, 7, 8, 13]); _b = true, _c = __asyncValues(this.data); _h.label = 1; case 1: return [4 /*yield*/, __await(_c.next())]; case 2: if (!(_d = _h.sent(), _e = _d.done, !_e)) return [3 /*break*/, 6]; _g = _d.value; _b = false; datum = _g; return [4 /*yield*/, __await(datum)]; case 3: return [4 /*yield*/, _h.sent()]; case 4: _h.sent(); _h.label = 5; case 5: _b = true; return [3 /*break*/, 1]; case 6: return [3 /*break*/, 13]; case 7: e_2_1 = _h.sent(); e_2 = { error: e_2_1 }; return [3 /*break*/, 13]; case 8: _h.trys.push([8, , 11, 12]); if (!(!_b && !_e && (_f = _c.return))) return [3 /*break*/, 10]; return [4 /*yield*/, __await(_f.call(_c))]; case 9: _h.sent(); _h.label = 10; case 10: return [3 /*break*/, 12]; case 11: if (e_2) throw e_2.error; return [7 /*endfinally*/]; case 12: return [7 /*endfinally*/]; case 13: return [2 /*return*/]; } }); }); }; return AsyncStream; }()); exports.AsyncStream = AsyncStream; //# sourceMappingURL=async-stream.js.map