UNPKG

ionicons

Version:

Premium icons for Ionic.

1,188 lines (1,187 loc) 72.4 kB
const NAMESPACE = 'ionicons'; /** * Virtual DOM patching algorithm based on Snabbdom by * Simon Friis Vindum (@paldepind) * Licensed under the MIT License * https://github.com/snabbdom/snabbdom/blob/master/LICENSE * * Modified for Stencil's renderer and slot projection */ let scopeId; let hostTagName; let isSvgMode = false; let queuePending = false; const getAssetPath = (path) => { const assetUrl = new URL(path, plt.$resourcesUrl$); return assetUrl.origin !== win.location.origin ? assetUrl.href : assetUrl.pathname; }; const setAssetPath = (path) => (plt.$resourcesUrl$ = path); const createTime = (fnName, tagName = '') => { { return () => { return; }; } }; const uniqueTime = (key, measureText) => { { return () => { return; }; } }; const HYDRATED_CSS = '{visibility:hidden}.hydrated{visibility:inherit}'; const XLINK_NS = 'http://www.w3.org/1999/xlink'; /** * Default style mode id */ /** * Reusable empty obj/array * Don't add values to these!! */ const EMPTY_OBJ = {}; const isDef = (v) => v != null; /** * Check whether a value is a 'complex type', defined here as an object or a * function. * * @param o the value to check * @returns whether it's a complex type or not */ const isComplexType = (o) => { // https://jsperf.com/typeof-fn-object/5 o = typeof o; return o === 'object' || o === 'function'; }; /** * Helper method for querying a `meta` tag that contains a nonce value * out of a DOM's head. * * @param doc The DOM containing the `head` to query against * @returns The content of the meta tag representing the nonce value, or `undefined` if no tag * exists or the tag has no content. */ function queryNonceMetaTagContent(doc) { var _a, _b, _c; return (_c = (_b = (_a = doc.head) === null || _a === void 0 ? void 0 : _a.querySelector('meta[name="csp-nonce"]')) === null || _b === void 0 ? void 0 : _b.getAttribute('content')) !== null && _c !== void 0 ? _c : undefined; } /** * Production h() function based on Preact by * Jason Miller (@developit) * Licensed under the MIT License * https://github.com/developit/preact/blob/master/LICENSE * * Modified for Stencil's compiler and vdom */ // export function h(nodeName: string | d.FunctionalComponent, vnodeData: d.PropsType, child?: d.ChildType): d.VNode; // export function h(nodeName: string | d.FunctionalComponent, vnodeData: d.PropsType, ...children: d.ChildType[]): d.VNode; const h = (nodeName, vnodeData, ...children) => { let child = null; let key = null; let simple = false; let lastSimple = false; const vNodeChildren = []; const walk = (c) => { for (let i = 0; i < c.length; i++) { child = c[i]; if (Array.isArray(child)) { walk(child); } else if (child != null && typeof child !== 'boolean') { if ((simple = typeof nodeName !== 'function' && !isComplexType(child))) { child = String(child); } if (simple && lastSimple) { // If the previous child was simple (string), we merge both vNodeChildren[vNodeChildren.length - 1].$text$ += child; } else { // Append a new vNode, if it's text, we create a text vNode vNodeChildren.push(simple ? newVNode(null, child) : child); } lastSimple = simple; } } }; walk(children); if (vnodeData) { // normalize class / classname attributes if (vnodeData.key) { key = vnodeData.key; } { const classData = vnodeData.className || vnodeData.class; if (classData) { vnodeData.class = typeof classData !== 'object' ? classData : Object.keys(classData) .filter((k) => classData[k]) .join(' '); } } } const vnode = newVNode(nodeName, null); vnode.$attrs$ = vnodeData; if (vNodeChildren.length > 0) { vnode.$children$ = vNodeChildren; } { vnode.$key$ = key; } return vnode; }; /** * A utility function for creating a virtual DOM node from a tag and some * possible text content. * * @param tag the tag for this element * @param text possible text content for the node * @returns a newly-minted virtual DOM node */ const newVNode = (tag, text) => { const vnode = { $flags$: 0, $tag$: tag, $text$: text, $elm$: null, $children$: null, }; { vnode.$attrs$ = null; } { vnode.$key$ = null; } return vnode; }; const Host = {}; /** * Check whether a given node is a Host node or not * * @param node the virtual DOM node to check * @returns whether it's a Host node or not */ const isHost = (node) => node && node.$tag$ === Host; /** * Parse a new property value for a given property type. * * While the prop value can reasonably be expected to be of `any` type as far as TypeScript's type checker is concerned, * it is not safe to assume that the string returned by evaluating `typeof propValue` matches: * 1. `any`, the type given to `propValue` in the function signature * 2. the type stored from `propType`. * * This function provides the capability to parse/coerce a property's value to potentially any other JavaScript type. * * Property values represented in TSX preserve their type information. In the example below, the number 0 is passed to * a component. This `propValue` will preserve its type information (`typeof propValue === 'number'`). Note that is * based on the type of the value being passed in, not the type declared of the class member decorated with `@Prop`. * ```tsx * <my-cmp prop-val={0}></my-cmp> * ``` * * HTML prop values on the other hand, will always a string * * @param propValue the new value to coerce to some type * @param propType the type of the prop, expressed as a binary number * @returns the parsed/coerced value */ const parsePropertyValue = (propValue, propType) => { // ensure this value is of the correct prop type if (propValue != null && !isComplexType(propValue)) { if (propType & 4 /* MEMBER_FLAGS.Boolean */) { // per the HTML spec, any string value means it is a boolean true value // but we'll cheat here and say that the string "false" is the boolean false return propValue === 'false' ? false : propValue === '' || !!propValue; } if (propType & 1 /* MEMBER_FLAGS.String */) { // could have been passed as a number or boolean // but we still want it as a string return String(propValue); } // redundant return here for better minification return propValue; } // not sure exactly what type we want // so no need to change to a different type return propValue; }; const getElement = (ref) => (getHostRef(ref).$hostElement$ ); /** * Helper function to create & dispatch a custom Event on a provided target * @param elm the target of the Event * @param name the name to give the custom Event * @param opts options for configuring a custom Event * @returns the custom Event */ const emitEvent = (elm, name, opts) => { const ev = plt.ce(name, opts); elm.dispatchEvent(ev); return ev; }; const rootAppliedStyles = /*@__PURE__*/ new WeakMap(); const registerStyle = (scopeId, cssText, allowCS) => { let style = styles.get(scopeId); if (supportsConstructableStylesheets && allowCS) { style = (style || new CSSStyleSheet()); if (typeof style === 'string') { style = cssText; } else { style.replaceSync(cssText); } } else { style = cssText; } styles.set(scopeId, style); }; const addStyle = (styleContainerNode, cmpMeta, mode) => { var _a; const scopeId = getScopeId(cmpMeta); const style = styles.get(scopeId); // if an element is NOT connected then getRootNode() will return the wrong root node // so the fallback is to always use the document for the root node in those cases styleContainerNode = styleContainerNode.nodeType === 11 /* NODE_TYPE.DocumentFragment */ ? styleContainerNode : doc; if (style) { if (typeof style === 'string') { styleContainerNode = styleContainerNode.head || styleContainerNode; let appliedStyles = rootAppliedStyles.get(styleContainerNode); let styleElm; if (!appliedStyles) { rootAppliedStyles.set(styleContainerNode, (appliedStyles = new Set())); } if (!appliedStyles.has(scopeId)) { { styleElm = doc.createElement('style'); styleElm.innerHTML = style; // Apply CSP nonce to the style tag if it exists const nonce = (_a = plt.$nonce$) !== null && _a !== void 0 ? _a : queryNonceMetaTagContent(doc); if (nonce != null) { styleElm.setAttribute('nonce', nonce); } styleContainerNode.insertBefore(styleElm, styleContainerNode.querySelector('link')); } if (appliedStyles) { appliedStyles.add(scopeId); } } } else if (!styleContainerNode.adoptedStyleSheets.includes(style)) { styleContainerNode.adoptedStyleSheets = [...styleContainerNode.adoptedStyleSheets, style]; } } return scopeId; }; const attachStyles = (hostRef) => { const cmpMeta = hostRef.$cmpMeta$; const elm = hostRef.$hostElement$; const flags = cmpMeta.$flags$; const endAttachStyles = createTime('attachStyles', cmpMeta.$tagName$); const scopeId = addStyle(elm.shadowRoot ? elm.shadowRoot : elm.getRootNode(), cmpMeta); if (flags & 10 /* CMP_FLAGS.needsScopedEncapsulation */) { // only required when we're NOT using native shadow dom (slot) // or this browser doesn't support native shadow dom // and this host element was NOT created with SSR // let's pick out the inner content for slot projection // create a node to represent where the original // content was first placed, which is useful later on // DOM WRITE!! elm['s-sc'] = scopeId; elm.classList.add(scopeId + '-h'); } endAttachStyles(); }; const getScopeId = (cmp, mode) => 'sc-' + (cmp.$tagName$); /** * Production setAccessor() function based on Preact by * Jason Miller (@developit) * Licensed under the MIT License * https://github.com/developit/preact/blob/master/LICENSE * * Modified for Stencil's compiler and vdom */ /** * When running a VDom render set properties present on a VDom node onto the * corresponding HTML element. * * Note that this function has special functionality for the `class`, * `style`, `key`, and `ref` attributes, as well as event handlers (like * `onClick`, etc). All others are just passed through as-is. * * @param elm the HTMLElement onto which attributes should be set * @param memberName the name of the attribute to set * @param oldValue the old value for the attribute * @param newValue the new value for the attribute * @param isSvg whether we're in an svg context or not * @param flags bitflags for Vdom variables */ const setAccessor = (elm, memberName, oldValue, newValue, isSvg, flags) => { if (oldValue !== newValue) { let isProp = isMemberInElement(elm, memberName); let ln = memberName.toLowerCase(); if (memberName === 'class') { const classList = elm.classList; const oldClasses = parseClassList(oldValue); const newClasses = parseClassList(newValue); classList.remove(...oldClasses.filter((c) => c && !newClasses.includes(c))); classList.add(...newClasses.filter((c) => c && !oldClasses.includes(c))); } else if (memberName === 'style') { // update style attribute, css properties and values { for (const prop in oldValue) { if (!newValue || newValue[prop] == null) { if (prop.includes('-')) { elm.style.removeProperty(prop); } else { elm.style[prop] = ''; } } } } for (const prop in newValue) { if (!oldValue || newValue[prop] !== oldValue[prop]) { if (prop.includes('-')) { elm.style.setProperty(prop, newValue[prop]); } else { elm.style[prop] = newValue[prop]; } } } } else if (memberName === 'key') ; else if (memberName === 'ref') { // minifier will clean this up if (newValue) { newValue(elm); } } else if ((!isProp ) && memberName[0] === 'o' && memberName[1] === 'n') { // Event Handlers // so if the member name starts with "on" and the 3rd characters is // a capital letter, and it's not already a member on the element, // then we're assuming it's an event listener if (memberName[2] === '-') { // on- prefixed events // allows to be explicit about the dom event to listen without any magic // under the hood: // <my-cmp on-click> // listens for "click" // <my-cmp on-Click> // listens for "Click" // <my-cmp on-ionChange> // listens for "ionChange" // <my-cmp on-EVENTS> // listens for "EVENTS" memberName = memberName.slice(3); } else if (isMemberInElement(win, ln)) { // standard event // the JSX attribute could have been "onMouseOver" and the // member name "onmouseover" is on the window's prototype // so let's add the listener "mouseover", which is all lowercased memberName = ln.slice(2); } else { // custom event // the JSX attribute could have been "onMyCustomEvent" // so let's trim off the "on" prefix and lowercase the first character // and add the listener "myCustomEvent" // except for the first character, we keep the event name case memberName = ln[2] + memberName.slice(3); } if (oldValue) { plt.rel(elm, memberName, oldValue, false); } if (newValue) { plt.ael(elm, memberName, newValue, false); } } else { // Set property if it exists and it's not a SVG const isComplex = isComplexType(newValue); if ((isProp || (isComplex && newValue !== null)) && !isSvg) { try { if (!elm.tagName.includes('-')) { const n = newValue == null ? '' : newValue; // Workaround for Safari, moving the <input> caret when re-assigning the same valued if (memberName === 'list') { isProp = false; } else if (oldValue == null || elm[memberName] != n) { elm[memberName] = n; } } else { elm[memberName] = newValue; } } catch (e) { } } /** * Need to manually update attribute if: * - memberName is not an attribute * - if we are rendering the host element in order to reflect attribute * - if it's a SVG, since properties might not work in <svg> * - if the newValue is null/undefined or 'false'. */ let xlink = false; { if (ln !== (ln = ln.replace(/^xlink\:?/, ''))) { memberName = ln; xlink = true; } } if (newValue == null || newValue === false) { if (newValue !== false || elm.getAttribute(memberName) === '') { if (xlink) { elm.removeAttributeNS(XLINK_NS, memberName); } else { elm.removeAttribute(memberName); } } } else if ((!isProp || flags & 4 /* VNODE_FLAGS.isHost */ || isSvg) && !isComplex) { newValue = newValue === true ? '' : newValue; if (xlink) { elm.setAttributeNS(XLINK_NS, memberName, newValue); } else { elm.setAttribute(memberName, newValue); } } } } }; const parseClassListRegex = /\s/; const parseClassList = (value) => (!value ? [] : value.split(parseClassListRegex)); const updateElement = (oldVnode, newVnode, isSvgMode, memberName) => { // if the element passed in is a shadow root, which is a document fragment // then we want to be adding attrs/props to the shadow root's "host" element // if it's not a shadow root, then we add attrs/props to the same element const elm = newVnode.$elm$.nodeType === 11 /* NODE_TYPE.DocumentFragment */ && newVnode.$elm$.host ? newVnode.$elm$.host : newVnode.$elm$; const oldVnodeAttrs = (oldVnode && oldVnode.$attrs$) || EMPTY_OBJ; const newVnodeAttrs = newVnode.$attrs$ || EMPTY_OBJ; { // remove attributes no longer present on the vnode by setting them to undefined for (memberName in oldVnodeAttrs) { if (!(memberName in newVnodeAttrs)) { setAccessor(elm, memberName, oldVnodeAttrs[memberName], undefined, isSvgMode, newVnode.$flags$); } } } // add new & update changed attributes for (memberName in newVnodeAttrs) { setAccessor(elm, memberName, oldVnodeAttrs[memberName], newVnodeAttrs[memberName], isSvgMode, newVnode.$flags$); } }; /** * Create a DOM Node corresponding to one of the children of a given VNode. * * @param oldParentVNode the parent VNode from the previous render * @param newParentVNode the parent VNode from the current render * @param childIndex the index of the VNode, in the _new_ parent node's * children, for which we will create a new DOM node * @param parentElm the parent DOM node which our new node will be a child of * @returns the newly created node */ const createElm = (oldParentVNode, newParentVNode, childIndex, parentElm) => { // tslint:disable-next-line: prefer-const const newVNode = newParentVNode.$children$[childIndex]; let i = 0; let elm; let childNode; if (newVNode.$text$ !== null) { // create text node elm = newVNode.$elm$ = doc.createTextNode(newVNode.$text$); } else { // create element elm = newVNode.$elm$ = (doc.createElement(newVNode.$tag$)); // add css classes, attrs, props, listeners, etc. { updateElement(null, newVNode, isSvgMode); } if (isDef(scopeId) && elm['s-si'] !== scopeId) { // if there is a scopeId and this is the initial render // then let's add the scopeId as a css class elm.classList.add((elm['s-si'] = scopeId)); } if (newVNode.$children$) { for (i = 0; i < newVNode.$children$.length; ++i) { // create the node childNode = createElm(oldParentVNode, newVNode, i); // return node could have been null if (childNode) { // append our new node elm.appendChild(childNode); } } } } return elm; }; /** * Create DOM nodes corresponding to a list of {@link d.Vnode} objects and * add them to the DOM in the appropriate place. * * @param parentElm the DOM node which should be used as a parent for the new * DOM nodes * @param before a child of the `parentElm` which the new children should be * inserted before (optional) * @param parentVNode the parent virtual DOM node * @param vnodes the new child virtual DOM nodes to produce DOM nodes for * @param startIdx the index in the child virtual DOM nodes at which to start * creating DOM nodes (inclusive) * @param endIdx the index in the child virtual DOM nodes at which to stop * creating DOM nodes (inclusive) */ const addVnodes = (parentElm, before, parentVNode, vnodes, startIdx, endIdx) => { let containerElm = (parentElm); let childNode; if (containerElm.shadowRoot && containerElm.tagName === hostTagName) { containerElm = containerElm.shadowRoot; } for (; startIdx <= endIdx; ++startIdx) { if (vnodes[startIdx]) { childNode = createElm(null, parentVNode, startIdx); if (childNode) { vnodes[startIdx].$elm$ = childNode; containerElm.insertBefore(childNode, before); } } } }; /** * Remove the DOM elements corresponding to a list of {@link d.VNode} objects. * This can be used to, for instance, clean up after a list of children which * should no longer be shown. * * This function also handles some of Stencil's slot relocation logic. * * @param vnodes a list of virtual DOM nodes to remove * @param startIdx the index at which to start removing nodes (inclusive) * @param endIdx the index at which to stop removing nodes (inclusive) */ const removeVnodes = (vnodes, startIdx, endIdx) => { for (let index = startIdx; index <= endIdx; ++index) { const vnode = vnodes[index]; if (vnode) { const elm = vnode.$elm$; nullifyVNodeRefs(vnode); if (elm) { // remove the vnode's element from the dom elm.remove(); } } } }; /** * Reconcile the children of a new VNode with the children of an old VNode by * traversing the two collections of children, identifying nodes that are * conserved or changed, calling out to `patch` to make any necessary * updates to the DOM, and rearranging DOM nodes as needed. * * The algorithm for reconciling children works by analyzing two 'windows' onto * the two arrays of children (`oldCh` and `newCh`). We keep track of the * 'windows' by storing start and end indices and references to the * corresponding array entries. Initially the two 'windows' are basically equal * to the entire array, but we progressively narrow the windows until there are * no children left to update by doing the following: * * 1. Skip any `null` entries at the beginning or end of the two arrays, so * that if we have an initial array like the following we'll end up dealing * only with a window bounded by the highlighted elements: * * [null, null, VNode1 , ... , VNode2, null, null] * ^^^^^^ ^^^^^^ * * 2. Check to see if the elements at the head and tail positions are equal * across the windows. This will basically detect elements which haven't * been added, removed, or changed position, i.e. if you had the following * VNode elements (represented as HTML): * * oldVNode: `<div><p><span>HEY</span></p></div>` * newVNode: `<div><p><span>THERE</span></p></div>` * * Then when comparing the children of the `<div>` tag we check the equality * of the VNodes corresponding to the `<p>` tags and, since they are the * same tag in the same position, we'd be able to avoid completely * re-rendering the subtree under them with a new DOM element and would just * call out to `patch` to handle reconciling their children and so on. * * 3. Check, for both windows, to see if the element at the beginning of the * window corresponds to the element at the end of the other window. This is * a heuristic which will let us identify _some_ situations in which * elements have changed position, for instance it _should_ detect that the * children nodes themselves have not changed but merely moved in the * following example: * * oldVNode: `<div><element-one /><element-two /></div>` * newVNode: `<div><element-two /><element-one /></div>` * * If we find cases like this then we also need to move the concrete DOM * elements corresponding to the moved children to write the re-order to the * DOM. * * 4. Finally, if VNodes have the `key` attribute set on them we check for any * nodes in the old children which have the same key as the first element in * our window on the new children. If we find such a node we handle calling * out to `patch`, moving relevant DOM nodes, and so on, in accordance with * what we find. * * Finally, once we've narrowed our 'windows' to the point that either of them * collapse (i.e. they have length 0) we then handle any remaining VNode * insertion or deletion that needs to happen to get a DOM state that correctly * reflects the new child VNodes. If, for instance, after our window on the old * children has collapsed we still have more nodes on the new children that * we haven't dealt with yet then we need to add them, or if the new children * collapse but we still have unhandled _old_ children then we need to make * sure the corresponding DOM nodes are removed. * * @param parentElm the node into which the parent VNode is rendered * @param oldCh the old children of the parent node * @param newVNode the new VNode which will replace the parent * @param newCh the new children of the parent node */ const updateChildren = (parentElm, oldCh, newVNode, newCh) => { let oldStartIdx = 0; let newStartIdx = 0; let idxInOld = 0; let i = 0; let oldEndIdx = oldCh.length - 1; let oldStartVnode = oldCh[0]; let oldEndVnode = oldCh[oldEndIdx]; let newEndIdx = newCh.length - 1; let newStartVnode = newCh[0]; let newEndVnode = newCh[newEndIdx]; let node; let elmToMove; while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) { if (oldStartVnode == null) { // VNode might have been moved left oldStartVnode = oldCh[++oldStartIdx]; } else if (oldEndVnode == null) { oldEndVnode = oldCh[--oldEndIdx]; } else if (newStartVnode == null) { newStartVnode = newCh[++newStartIdx]; } else if (newEndVnode == null) { newEndVnode = newCh[--newEndIdx]; } else if (isSameVnode(oldStartVnode, newStartVnode)) { // if the start nodes are the same then we should patch the new VNode // onto the old one, and increment our `newStartIdx` and `oldStartIdx` // indices to reflect that. We don't need to move any DOM Nodes around // since things are matched up in order. patch(oldStartVnode, newStartVnode); oldStartVnode = oldCh[++oldStartIdx]; newStartVnode = newCh[++newStartIdx]; } else if (isSameVnode(oldEndVnode, newEndVnode)) { // likewise, if the end nodes are the same we patch new onto old and // decrement our end indices, and also likewise in this case we don't // need to move any DOM Nodes. patch(oldEndVnode, newEndVnode); oldEndVnode = oldCh[--oldEndIdx]; newEndVnode = newCh[--newEndIdx]; } else if (isSameVnode(oldStartVnode, newEndVnode)) { patch(oldStartVnode, newEndVnode); // We need to move the element for `oldStartVnode` into a position which // will be appropriate for `newEndVnode`. For this we can use // `.insertBefore` and `oldEndVnode.$elm$.nextSibling`. If there is a // sibling for `oldEndVnode.$elm$` then we want to move the DOM node for // `oldStartVnode` between `oldEndVnode` and it's sibling, like so: // // <old-start-node /> // <some-intervening-node /> // <old-end-node /> // <!-- -> <-- `oldStartVnode.$elm$` should be inserted here // <next-sibling /> // // If instead `oldEndVnode.$elm$` has no sibling then we just want to put // the node for `oldStartVnode` at the end of the children of // `parentElm`. Luckily, `Node.nextSibling` will return `null` if there // aren't any siblings, and passing `null` to `Node.insertBefore` will // append it to the children of the parent element. parentElm.insertBefore(oldStartVnode.$elm$, oldEndVnode.$elm$.nextSibling); oldStartVnode = oldCh[++oldStartIdx]; newEndVnode = newCh[--newEndIdx]; } else if (isSameVnode(oldEndVnode, newStartVnode)) { patch(oldEndVnode, newStartVnode); // We've already checked above if `oldStartVnode` and `newStartVnode` are // the same node, so since we're here we know that they are not. Thus we // can move the element for `oldEndVnode` _before_ the element for // `oldStartVnode`, leaving `oldStartVnode` to be reconciled in the // future. parentElm.insertBefore(oldEndVnode.$elm$, oldStartVnode.$elm$); oldEndVnode = oldCh[--oldEndIdx]; newStartVnode = newCh[++newStartIdx]; } else { // Here we do some checks to match up old and new nodes based on the // `$key$` attribute, which is set by putting a `key="my-key"` attribute // in the JSX for a DOM element in the implementation of a Stencil // component. // // First we check to see if there are any nodes in the array of old // children which have the same key as the first node in the new // children. idxInOld = -1; { for (i = oldStartIdx; i <= oldEndIdx; ++i) { if (oldCh[i] && oldCh[i].$key$ !== null && oldCh[i].$key$ === newStartVnode.$key$) { idxInOld = i; break; } } } if (idxInOld >= 0) { // We found a node in the old children which matches up with the first // node in the new children! So let's deal with that elmToMove = oldCh[idxInOld]; if (elmToMove.$tag$ !== newStartVnode.$tag$) { // the tag doesn't match so we'll need a new DOM element node = createElm(oldCh && oldCh[newStartIdx], newVNode, idxInOld); } else { patch(elmToMove, newStartVnode); // invalidate the matching old node so that we won't try to update it // again later on oldCh[idxInOld] = undefined; node = elmToMove.$elm$; } newStartVnode = newCh[++newStartIdx]; } else { // We either didn't find an element in the old children that matches // the key of the first new child OR the build is not using `key` // attributes at all. In either case we need to create a new element // for the new node. node = createElm(oldCh && oldCh[newStartIdx], newVNode, newStartIdx); newStartVnode = newCh[++newStartIdx]; } if (node) { // if we created a new node then handle inserting it to the DOM { oldStartVnode.$elm$.parentNode.insertBefore(node, oldStartVnode.$elm$); } } } } if (oldStartIdx > oldEndIdx) { // we have some more new nodes to add which don't match up with old nodes addVnodes(parentElm, newCh[newEndIdx + 1] == null ? null : newCh[newEndIdx + 1].$elm$, newVNode, newCh, newStartIdx, newEndIdx); } else if (newStartIdx > newEndIdx) { // there are nodes in the `oldCh` array which no longer correspond to nodes // in the new array, so lets remove them (which entails cleaning up the // relevant DOM nodes) removeVnodes(oldCh, oldStartIdx, oldEndIdx); } }; /** * Compare two VNodes to determine if they are the same * * **NB**: This function is an equality _heuristic_ based on the available * information set on the two VNodes and can be misleading under certain * circumstances. In particular, if the two nodes do not have `key` attrs * (available under `$key$` on VNodes) then the function falls back on merely * checking that they have the same tag. * * So, in other words, if `key` attrs are not set on VNodes which may be * changing order within a `children` array or something along those lines then * we could obtain a false negative and then have to do needless re-rendering * (i.e. we'd say two VNodes aren't equal when in fact they should be). * * @param leftVNode the first VNode to check * @param rightVNode the second VNode to check * @returns whether they're equal or not */ const isSameVnode = (leftVNode, rightVNode) => { // compare if two vnode to see if they're "technically" the same // need to have the same element tag, and same key to be the same if (leftVNode.$tag$ === rightVNode.$tag$) { // this will be set if components in the build have `key` attrs set on them { return leftVNode.$key$ === rightVNode.$key$; } } return false; }; /** * Handle reconciling an outdated VNode with a new one which corresponds to * it. This function handles flushing updates to the DOM and reconciling the * children of the two nodes (if any). * * @param oldVNode an old VNode whose DOM element and children we want to update * @param newVNode a new VNode representing an updated version of the old one */ const patch = (oldVNode, newVNode) => { const elm = (newVNode.$elm$ = oldVNode.$elm$); const oldChildren = oldVNode.$children$; const newChildren = newVNode.$children$; const text = newVNode.$text$; if (text === null) { { { // either this is the first render of an element OR it's an update // AND we already know it's possible it could have changed // this updates the element's css classes, attrs, props, listeners, etc. updateElement(oldVNode, newVNode, isSvgMode); } } if (oldChildren !== null && newChildren !== null) { // looks like there's child vnodes for both the old and new vnodes // so we need to call `updateChildren` to reconcile them updateChildren(elm, oldChildren, newVNode, newChildren); } else if (newChildren !== null) { // no old child vnodes, but there are new child vnodes to add if (oldVNode.$text$ !== null) { // the old vnode was text, so be sure to clear it out elm.textContent = ''; } // add the new vnode children addVnodes(elm, null, newVNode, newChildren, 0, newChildren.length - 1); } else if (oldChildren !== null) { // no new child vnodes, but there are old child vnodes to remove removeVnodes(oldChildren, 0, oldChildren.length - 1); } } else if (oldVNode.$text$ !== text) { // update the text content for the text only vnode // and also only if the text is different than before elm.data = text; } }; /** * 'Nullify' any VDom `ref` callbacks on a VDom node or its children by * calling them with `null`. This signals that the DOM element corresponding to * the VDom node has been removed from the DOM. * * @param vNode a virtual DOM node */ const nullifyVNodeRefs = (vNode) => { { vNode.$attrs$ && vNode.$attrs$.ref && vNode.$attrs$.ref(null); vNode.$children$ && vNode.$children$.map(nullifyVNodeRefs); } }; /** * The main entry point for Stencil's virtual DOM-based rendering engine * * Given a {@link d.HostRef} container and some virtual DOM nodes, this * function will handle creating a virtual DOM tree with a single root, patching * the current virtual DOM tree onto an old one (if any), dealing with slot * relocation, and reflecting attributes. * * @param hostRef data needed to root and render the virtual DOM tree, such as * the DOM node into which it should be rendered. * @param renderFnResults the virtual DOM nodes to be rendered * @param isInitialLoad whether or not this is the first call after page load */ const renderVdom = (hostRef, renderFnResults, isInitialLoad = false) => { const hostElm = hostRef.$hostElement$; const cmpMeta = hostRef.$cmpMeta$; const oldVNode = hostRef.$vnode$ || newVNode(null, null); // if `renderFnResults` is a Host node then we can use it directly. If not, // we need to call `h` again to wrap the children of our component in a // 'dummy' Host node (well, an empty vnode) since `renderVdom` assumes // implicitly that the top-level vdom node is 1) an only child and 2) // contains attrs that need to be set on the host element. const rootVnode = isHost(renderFnResults) ? renderFnResults : h(null, null, renderFnResults); hostTagName = hostElm.tagName; if (cmpMeta.$attrsToReflect$) { rootVnode.$attrs$ = rootVnode.$attrs$ || {}; cmpMeta.$attrsToReflect$.map(([propName, attribute]) => (rootVnode.$attrs$[attribute] = hostElm[propName])); } // On the first render and *only* on the first render we want to check for // any attributes set on the host element which are also set on the vdom // node. If we find them, we override the value on the VDom node attrs with // the value from the host element, which allows developers building apps // with Stencil components to override e.g. the `role` attribute on a // component even if it's already set on the `Host`. if (isInitialLoad && rootVnode.$attrs$) { for (const key of Object.keys(rootVnode.$attrs$)) { // We have a special implementation in `setAccessor` for `style` and // `class` which reconciles values coming from the VDom with values // already present on the DOM element, so we don't want to override those // attributes on the VDom tree with values from the host element if they // are present. // // Likewise, `ref` and `key` are special internal values for the Stencil // runtime and we don't want to override those either. if (hostElm.hasAttribute(key) && !['key', 'ref', 'style', 'class'].includes(key)) { rootVnode.$attrs$[key] = hostElm[key]; } } } rootVnode.$tag$ = null; rootVnode.$flags$ |= 4 /* VNODE_FLAGS.isHost */; hostRef.$vnode$ = rootVnode; rootVnode.$elm$ = oldVNode.$elm$ = (hostElm.shadowRoot || hostElm ); { scopeId = hostElm['s-sc']; } // synchronous patch patch(oldVNode, rootVnode); }; const attachToAncestor = (hostRef, ancestorComponent) => { if (ancestorComponent && !hostRef.$onRenderResolve$ && ancestorComponent['s-p']) { ancestorComponent['s-p'].push(new Promise((r) => (hostRef.$onRenderResolve$ = r))); } }; const scheduleUpdate = (hostRef, isInitialLoad) => { { hostRef.$flags$ |= 16 /* HOST_FLAGS.isQueuedForUpdate */; } if (hostRef.$flags$ & 4 /* HOST_FLAGS.isWaitingForChildren */) { hostRef.$flags$ |= 512 /* HOST_FLAGS.needsRerender */; return; } attachToAncestor(hostRef, hostRef.$ancestorComponent$); // there is no ancestor component or the ancestor component // has already fired off its lifecycle update then // fire off the initial update const dispatch = () => dispatchHooks(hostRef, isInitialLoad); return writeTask(dispatch) ; }; /** * Dispatch initial-render and update lifecycle hooks, enqueuing calls to * component lifecycle methods like `componentWillLoad` as well as * {@link updateComponent}, which will kick off the virtual DOM re-render. * * @param hostRef a reference to a host DOM node * @param isInitialLoad whether we're on the initial load or not * @returns an empty Promise which is used to enqueue a series of operations for * the component */ const dispatchHooks = (hostRef, isInitialLoad) => { const endSchedule = createTime('scheduleUpdate', hostRef.$cmpMeta$.$tagName$); const instance = hostRef.$lazyInstance$ ; // We're going to use this variable together with `enqueue` to implement a // little promise-based queue. We start out with it `undefined`. When we add // the first function to the queue we'll set this variable to be that // function's return value. When we attempt to add subsequent values to the // queue we'll check that value and, if it was a `Promise`, we'll then chain // the new function off of that `Promise` using `.then()`. This will give our // queue two nice properties: // // 1. If all functions added to the queue are synchronous they'll be called // synchronously right away. // 2. If all functions added to the queue are asynchronous they'll all be // called in order after `dispatchHooks` exits. let maybePromise; if (isInitialLoad) { { // If `componentWillLoad` returns a `Promise` then we want to wait on // whatever's going on in that `Promise` before we launch into // rendering the component, doing other lifecycle stuff, etc. So // in that case we assign the returned promise to the variable we // declared above to hold a possible 'queueing' Promise maybePromise = safeCall(instance, 'componentWillLoad'); } } endSchedule(); return enqueue(maybePromise, () => updateComponent(hostRef, instance, isInitialLoad)); }; /** * This function uses a Promise to implement a simple first-in, first-out queue * of functions to be called. * * The queue is ordered on the basis of the first argument. If it's * `undefined`, then nothing is on the queue yet, so the provided function can * be called synchronously (although note that this function may return a * `Promise`). The idea is that then the return value of that enqueueing * operation is kept around, so that if it was a `Promise` then subsequent * functions can be enqueued by calling this function again with that `Promise` * as the first argument. * * @param maybePromise either a `Promise` which should resolve before the next function is called or an 'empty' sentinel * @param fn a function to enqueue * @returns either a `Promise` or the return value of the provided function */ const enqueue = (maybePromise, fn) => isPromisey(maybePromise) ? maybePromise.then(fn) : fn(); /** * Check that a value is a `Promise`. To check, we first see if the value is an * instance of the `Promise` global. In a few circumstances, in particular if * the global has been overwritten, this is could be misleading, so we also do * a little 'duck typing' check to see if the `.then` property of the value is * defined and a function. * * @param maybePromise it might be a promise! * @returns whether it is or not */ const isPromisey = (maybePromise) => maybePromise instanceof Promise || (maybePromise && maybePromise.then && typeof maybePromise.then === 'function'); /** * Update a component given reference to its host elements and so on. * * @param hostRef an object containing references to the element's host node, * VDom nodes, and other metadata * @param instance a reference to the underlying host element where it will be * rendered * @param isInitialLoad whether or not this function is being called as part of * the first render cycle */ const updateComponent = async (hostRef, instance, isInitialLoad) => { var _a; const elm = hostRef.$hostElement$; const endUpdate = createTime('update', hostRef.$cmpMeta$.$tagName$); const rc = elm['s-rc']; if (isInitialLoad) { // DOM WRITE! attachStyles(hostRef); } const endRender = createTime('render', hostRef.$cmpMeta$.$tagName$); { callRender(hostRef, instance, elm, isInitialLoad); } if (rc) { // ok, so turns out there are some child host elements // waiting on this parent element to load // let's fire off all update callbacks waiting rc.map((cb) => cb()); elm['s-rc'] = undefined; } endRender(); endUpdate(); { const childrenPromises = (_a = elm['s-p']) !== null && _a !== void 0 ? _a : []; const postUpdate = () => postUpdateComponent(hostRef); if (childrenPromises.length === 0) { postUpdate(); } else { Promise.all(childrenPromises).then(postUpdate); hostRef.$flags$ |= 4 /* HOST_FLAGS.isWaitingForChildren */; childrenPromises.length = 0; } } }; /** * Handle making the call to the VDom renderer with the proper context given * various build variables * * @param hostRef an object containing references to the element's host node, * VDom nodes, and other metadata * @param instance a reference to the underlying host element where it will be * rendered * @param elm the Host element for the component * @param isInitialLoad whether or not this function is being called as part of * @returns an empty promise */ const callRender = (hostRef, instance, elm, isInitialLoad) => { try { instance = instance.render() ; { hostRef.$flags$ &= ~16 /* HOST_FLAGS.isQueuedForUpdate */; } { hostRef.$flags$ |= 2 /* HOST_FLAGS.hasRendered */; } { { // looks like we've got child nodes to render into this host element // or we need to update the css class/attrs on the host element // DOM WRITE! { renderVdom(hostRef, instance, isInitialLoad); } } } } catch (e) { consoleError(e, hostRef.$hostElement$); } return null; }; const postUpdateComponent = (hostRef) => { const tagName = hostRef.$cmpMeta$.$tagName$; const elm = hostRef.$hostElement$; const endPostUpdate = createTime('postUpdate', tagName); const instance = hostRef.$lazyInstance$ ; const ancestorComponent = hostRef.$ancestorComponent$; if (!(hostRef.$flags$ & 64 /* HOST_FLAGS.hasLoadedComponent */)) { hostRef.$flags$ |= 64 /* HOST_FLAGS.hasLoadedComponent */; { // DOM WRITE! addHydratedFlag(elm); } { safeCall(instance, 'componentDidLoad'); } endPostUpdate(); { hostRef.$onReadyResolve$(elm); if (!ancestorComponent) { appDidLoad(); } } } else { endPostUpdate(); } // load events fire from bottom to top // the deepest elements load first then bubbles up { if (hostRef.$onRenderResolve$) { hostRef.$onRenderResolve$(); hostRef.$onRenderResolve$ = undefined; } if (hostRef.$flags$ & 512 /* HOST_FLAGS.needsRerender */) { nextTick(() => scheduleUpdate(hostRef, false)); } hostRef.$flags$ &= ~(4 /* HOST_FLAGS.isWaitingForChildren */ | 512 /* HOST_FLAGS.needsRerender */); } // ( •_•) // ( •_•)>⌐■-■ // (⌐■_■) }; const appDidLoad = (who) => { // on appload // we have finish the first big initial render { addHydratedFlag(doc.documentElement); } nextTick(() => emitEvent(win, 'appload', { detail: { namespace: NAMESPACE } })); }; const safeCall = (instance, method, arg) => { if (instance && instance[method]) { try { return instance[method](arg); } catch (e) { consoleError(e); } } return undefined; }; const addHydratedFlag = (elm) => elm.classList.add('hydrated') ; const getValue = (ref, propName) => getHostRef(ref).$instanceValues$.get(propName); const setValue = (ref, propName, newVal, cmpMeta) => { // check our new property value against our internal value const hostRef = getHostRef(ref); const elm = hostRef.$hostElement$ ; const oldVal = hostRef.$instanceValues$.get(propName); const flags = hostRef.$flags$; const instance = hostRef.$lazyInstance$ ; newVal = parsePropertyValue(newVal, cmpMeta.$members$[propName][0]); // explicitly check for NaN on both sides, as `NaN === NaN` is always false const areBothNaN = Number.isNaN(oldVal) && Number.isNaN(newVal); const didValueChange = newVal !== oldVal && !areBothNaN; if ((!(flags & 8 /* HOST_FLAGS.isConstructingInstance */) || oldVal === undefined) && didValueChange) { // gadzooks! the property's value has changed!! // set