iocane
Version:
Textual encryption library
94 lines (93 loc) • 5.18 kB
JavaScript
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
var __generator = (this && this.__generator) || function (thisArg, body) {
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
function verb(n) { return function (v) { return step([n, v]); }; }
function step(op) {
if (f) throw new TypeError("Generator is already executing.");
while (g && (g = 0, op[0] && (_ = 0)), _) try {
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
if (y = 0, t) op = [op[0] & 2, t.value];
switch (op[0]) {
case 0: case 1: t = op; break;
case 4: _.label++; return { value: op[1], done: false };
case 5: _.label++; y = op[1]; op = [0]; continue;
case 7: op = _.ops.pop(); _.trys.pop(); continue;
default:
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
if (t[2]) _.ops.pop();
_.trys.pop(); continue;
}
op = body.call(thisArg, _);
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
}
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.deriveKeyFromPassword = void 0;
var pbkdf2_1 = require("pbkdf2");
var symbols_1 = require("../symbols");
function deriveKeyFromPassword(password, salt, rounds, generateHMAC) {
if (generateHMAC === void 0) { generateHMAC = true; }
return __awaiter(this, void 0, void 0, function () {
var bits, derivedKeyData, derivedKeyHex, dkhLength, keyBuffer;
return __generator(this, function (_a) {
switch (_a.label) {
case 0:
if (!password) {
throw new Error("Failed deriving key: Password must be provided");
}
if (!salt) {
throw new Error("Failed deriving key: Salt must be provided");
}
if (!rounds || rounds <= 0) {
throw new Error("Failed deriving key: Rounds must be greater than 0");
}
bits = generateHMAC ? (symbols_1.PASSWORD_KEY_SIZE + symbols_1.HMAC_KEY_SIZE) * 8 : symbols_1.PASSWORD_KEY_SIZE * 8;
return [4 /*yield*/, pbkdf2(password, salt, rounds, bits)];
case 1:
derivedKeyData = _a.sent();
derivedKeyHex = derivedKeyData.toString("hex");
dkhLength = derivedKeyHex.length;
keyBuffer = generateHMAC
? Buffer.from(derivedKeyHex.substr(0, dkhLength / 2), "hex")
: Buffer.from(derivedKeyHex, "hex");
return [2 /*return*/, {
salt: salt,
key: keyBuffer,
rounds: rounds,
hmac: generateHMAC
? Buffer.from(derivedKeyHex.substr(dkhLength / 2, dkhLength / 2), "hex")
: null
}];
}
});
});
}
exports.deriveKeyFromPassword = deriveKeyFromPassword;
function pbkdf2(password, salt, rounds, bits) {
return __awaiter(this, void 0, void 0, function () {
return __generator(this, function (_a) {
return [2 /*return*/, new Promise(function (resolve, reject) {
(0, pbkdf2_1.pbkdf2)(password, salt, rounds, bits / 8, symbols_1.DERIVED_KEY_ALGORITHM, function (err, key) {
if (err) {
return reject(err);
}
return resolve(key);
});
})];
});
});
}
;