interchainjs
Version:
InterchainJS is a JavaScript library for interacting with Cosmos SDK based blockchains.
172 lines (171 loc) • 6.71 kB
JavaScript
;
Object.defineProperty(exports, "__esModule", { value: true });
exports.Timestamp = void 0;
const binary_1 = require("../../binary");
const helpers_1 = require("../../helpers");
function createBaseTimestamp() {
return {
seconds: BigInt(0),
nanos: 0
};
}
/**
* A Timestamp represents a point in time independent of any time zone or local
* calendar, encoded as a count of seconds and fractions of seconds at
* nanosecond resolution. The count is relative to an epoch at UTC midnight on
* January 1, 1970, in the proleptic Gregorian calendar which extends the
* Gregorian calendar backwards to year one.
*
* All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
* second table is needed for interpretation, using a [24-hour linear
* smear](https://developers.google.com/time/smear).
*
* The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
* restricting to that range, we ensure that we can convert to and from [RFC
* 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.
*
* # Examples
*
* Example 1: Compute Timestamp from POSIX `time()`.
*
* Timestamp timestamp;
* timestamp.set_seconds(time(NULL));
* timestamp.set_nanos(0);
*
* Example 2: Compute Timestamp from POSIX `gettimeofday()`.
*
* struct timeval tv;
* gettimeofday(&tv, NULL);
*
* Timestamp timestamp;
* timestamp.set_seconds(tv.tv_sec);
* timestamp.set_nanos(tv.tv_usec * 1000);
*
* Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
*
* FILETIME ft;
* GetSystemTimeAsFileTime(&ft);
* UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
*
* // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
* // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
* Timestamp timestamp;
* timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
* timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
*
* Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
*
* long millis = System.currentTimeMillis();
*
* Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
* .setNanos((int) ((millis % 1000) * 1000000)).build();
*
* Example 5: Compute Timestamp from Java `Instant.now()`.
*
* Instant now = Instant.now();
*
* Timestamp timestamp =
* Timestamp.newBuilder().setSeconds(now.getEpochSecond())
* .setNanos(now.getNano()).build();
*
* Example 6: Compute Timestamp from current time in Python.
*
* timestamp = Timestamp()
* timestamp.GetCurrentTime()
*
* # JSON Mapping
*
* In JSON format, the Timestamp type is encoded as a string in the
* [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
* format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
* where {year} is always expressed using four digits while {month}, {day},
* {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
* seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
* are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
* is required. A proto3 JSON serializer should always use UTC (as indicated by
* "Z") when printing the Timestamp type and a proto3 JSON parser should be
* able to accept both UTC and other timezones (as indicated by an offset).
*
* For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
* 01:30 UTC on January 15, 2017.
*
* In JavaScript, one can convert a Date object to this format using the
* standard
* [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
* method. In Python, a standard `datetime.datetime` object can be converted
* to this format using
* [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
* the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
* the Joda Time's [`ISODateTimeFormat.dateTime()`](
* http://joda-time.sourceforge.net/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime()
* ) to obtain a formatter capable of generating timestamps in this format.
* @name Timestamp
* @package google.protobuf
* @see proto type: google.protobuf.Timestamp
*/
exports.Timestamp = {
typeUrl: "/google.protobuf.Timestamp",
is(o) {
return o && (o.$typeUrl === exports.Timestamp.typeUrl || typeof o.seconds === "bigint" && typeof o.nanos === "number");
},
isAmino(o) {
return o && (o.$typeUrl === exports.Timestamp.typeUrl || typeof o.seconds === "bigint" && typeof o.nanos === "number");
},
encode(message, writer = binary_1.BinaryWriter.create()) {
if (message.seconds !== BigInt(0)) {
writer.uint32(8).int64(message.seconds);
}
if (message.nanos !== 0) {
writer.uint32(16).int32(message.nanos);
}
return writer;
},
decode(input, length) {
const reader = input instanceof binary_1.BinaryReader ? input : new binary_1.BinaryReader(input);
let end = length === undefined ? reader.len : reader.pos + length;
const message = createBaseTimestamp();
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
message.seconds = reader.int64();
break;
case 2:
message.nanos = reader.int32();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return message;
},
fromPartial(object) {
const message = createBaseTimestamp();
message.seconds = object.seconds !== undefined && object.seconds !== null ? BigInt(object.seconds.toString()) : BigInt(0);
message.nanos = object.nanos ?? 0;
return message;
},
fromAmino(object) {
return (0, helpers_1.fromJsonTimestamp)(object);
},
toAmino(message) {
return (0, helpers_1.fromTimestamp)(message).toISOString().replace(/\.\d+Z$/, "Z");
},
fromAminoMsg(object) {
return exports.Timestamp.fromAmino(object.value);
},
fromProtoMsg(message) {
return exports.Timestamp.decode(message.value);
},
toProto(message) {
return exports.Timestamp.encode(message).finish();
},
toProtoMsg(message) {
return {
typeUrl: "/google.protobuf.Timestamp",
value: exports.Timestamp.encode(message).finish()
};
},
registerTypeUrl() { }
};