UNPKG

intelligence

Version:

Machine learning library written in javascript

242 lines (225 loc) 8.3 kB
var events = require('events'); var utils = require('./../infrastructure/utils'); var selectionStrategies = require('./selectionStrategies'); /** * Genetic algorithm population * @constructor * @param {object} options - Population options * @param {Individual} options.baseIndividual - * @property {object} options - Population options */ var Population = function (options) { this.options = options; this.individuals = null; this.validateRequiredOptions(); this.setDefaultOptionsIfNotProvided(); this.initialise(); events.EventEmitter.call(this); return this; }; utils.inherits(Population, events.EventEmitter); /** * Throws an exception if a required option is missing * @throws An exception is thrown if a required option is missing * @returns {Population} Reference to current object for chaining */ Population.prototype.validateRequiredOptions = function () { if (!this.options) { throw "options are required"; } else if (!this.options.baseIndividual) { throw "option 'baseIndividual' is required"; } else if (!this.options.crossoverStrategy) { throw "option 'crossoverStrategy' is required"; } else if (!this.options.fitnessFunction) { throw "options 'fitnessFunction' is required"; } return this; }; /** * Sets default values for options that have not been defined * @returns {Population} Reference to current object for chaining */ Population.prototype.setDefaultOptionsIfNotProvided = function () { if (!this.options.populationSize) { this.options.populationSize = 100; } if (this.options.crossoverRate === undefined) { this.options.crossoverRate = 0.75; } if (this.options.mutationRate === undefined) { this.options.mutationRate = 0.2; } if (!this.options.tournamentSize) { this.options.tournamentSize = Math.ceil(this.options.populationSize * 0.05); } if (!this.options.selectionStrategy) { this.options.selectionStrategy = selectionStrategies.tournament; } return this; }; /** * Creates a randomly generated population of individuals * @returns {Population} Reference to current object for chaining */ Population.prototype.initialise = function () { this.individuals = []; for (var i = 0; i < this.options.populationSize; i++) { this.individuals.push(this.options.baseIndividual.createNew()); } return this; }; /** * Calculates the fitness of each individual where the fitness value is null * @returns {Population} Reference to current object for chaining */ Population.prototype.evaluateFitness = function () { for (var i = 0; i < this.individuals.length; i++) { var individual = this.individuals[i]; if (individual.fitness === null) { individual.fitness = this.options.fitnessFunction(individual); } } return this.filterNanFitness(); }; /** * Performs crossover using the crossoverStrategy function defined in the population options * @returns {Population} Reference to current object for chaining */ Population.prototype.crossover = function () { this.evaluateFitness(); var limbo = []; if (this.options.elitism) { var elite = this.getFittestIndividuals(this.options.elitism); for (var i = 0; i < elite.length; i++) { limbo.push(elite[i].copy()); } } while (limbo.length < this.individuals.length) { var selections = this.options.selectionStrategy(this.individuals, this.options); if (utils.random() < this.options.crossoverRate) { var elections = this.options.crossoverStrategy(selections, this.options); selections = elections; for (var i = 0; i < selections.length; i++) selections[i].fitness = null; } limbo = limbo.concat(selections); } this.individuals = limbo; return this; }; /** * Mutates the population based on the mutationRate property in the population options * @returns {Population} Reference to current object for chaining */ Population.prototype.mutate = function () { this.evaluateFitness(); var elite = this.options.elitism ? this.getFittestIndividuals(this.options.elitism) : null; for (var i = 0; i < this.individuals.length; i++) { if (!elite || elite.indexOf(this.individuals[i]) === -1) { if (utils.random() < this.options.mutationRate) { this.individuals[i].mutate(); this.individuals[i].fitness = null; } } } return this; }; /** * Returns a specified number of individuals with the best fitness rating in the population * @param {number} [numIndividuals=1] - The number of individuals to return * @returns {Individual[]} An array of the fittest individuals in the population */ Population.prototype.getFittestIndividuals = function (numIndividuals) { this.evaluateFitness(); var self = this; this.evaluateFitness(); if (!numIndividuals) numIndividuals = 1; return this.individuals.sort(function (a, b) { if (a.fitness === null && b.fitness === null) { return 0; } else if (a.fitness === null) { return -1; } else if (b.fitness === null) { return 1; } else { return self.options.isMinimise ? a.fitness - b.fitness : b.fitness - a.fitness; } }).slice(0, numIndividuals); }; /** * Calculate the average fitness of all individuals in the population (exluding infinite values) * @returns {number} Average fitness of the population */ Population.prototype.getAverageFitness = function () { this.evaluateFitness(); var sum = 0; for (var i = 0; i < this.individuals.length; i++) { if (isFinite(this.individuals[i].fitness)) { sum += this.individuals[i].fitness; } }; return sum / this.individuals.length; }; /** * Applies a single iteration of crossover and mutation to the population * @returns {Population} Reference to current object for chaining */ Population.prototype.step = function () { return this.evaluateFitness().crossover().mutate().evaluateFitness(); }; /** * Trains the population over a specified number of generations * @param {number} numGenerations - The number of generations to train the population over * @returns {Population} Reference to current object for chaining */ Population.prototype.train = function (numGenerations) { if (numGenerations <= 0) { throw "'numGenerations' must greater than 0"; } else { for (var i = 0; i < numGenerations; i++) { this.step(); this.emit('generationCompleted', this, i); } } this.emit('trainingCompleted', this); return this; }; /** * Subsitutes an individuals fitness to positive or negative infinity if it isNaN * @returns {Population} Reference to current object for chaining */ Population.prototype.filterNanFitness = function () { var value = this.options.isMinimise ? Number.POSITIVE_INFINITY : Number.NEGATIVE_INFINITY; for (var i = 0; i < this.individuals.length; i++) { var individual = this.individuals[i]; if (isNaN(individual.fitness)) { individual.fitness = value } } return this; }; /** * Save the population to a file * @param {string} filePath - Path to file * @callback {writeToFileCallback} cb - Callback handler */ Population.prototype.saveToFile = function (filePath, cb) { var serialised = utils.serialise(this); utils.writeToFile(filePath, serialised, cb); }; /** * Load a population from a file * @static * @param {string} filePath - Path to file * @callback {loadFromFileCallback} cb - Callback handler */ Population.loadFromFile = function (filePath, cb) { utils.readFromFile(filePath, function (err, data) { if (err) { cb(err); } else { var deserialised = utils.deserialise(data); return deserialised; } }); }; exports.Population = Population;