inorder-tree-layout
Version:
Index calculations for inorder layout of balanced binary trees
88 lines (57 loc) • 1.93 kB
Markdown
inorder-tree-layout
===================
Operations on nodes for balanced binary trees stored in in-order layout. These are useful if you are building data structures, like binary search trees, implicitly (ie not storing pointers to subtrees).
## Install
npm install inorder-tree-layout
## Example
Suppose we have a tree with 10 elements, packed in level order. Then the inorder labelling of this tree looks like the following picture:
```
The tree:
6
/ \
3 8
/ \ / \
1 5 7 9
/ \ |
0 2 4
```
Now given this tree, here is how we can compute some queries using this library:
```javascript
var layout = require("inorder-tree-layout")
console.log(layout.left(10, 3)) //Prints: 1
console.log(layout.parent(10, 7)) //Prints: 8
console.log(layout.height(10, 9)) //Prints: 0
```
## API
```javascript
var layout = require("inorder-tree-layout")
```
**Conventions:**
* `n` is always the size of the tree
* `x` is the index of a node in the tree
### `layout.root(n)`
Returns the index of the root of a tree of size n.
### `layout.begin(n)`
Returns the index of the first node of the tree
### `layout.end(n)`
Returns the index of the last node in the tree
### `layout.height(n, x)`
Returns the height of node `x` in a tree of size `n`
### `layout.prev(n, x)`
Returns the predecessor of `x` in an in-order traversal
### `layout.next(n, x)`
Returns the successor of `x` in an in-order traversal
### `layout.parent(n, x)`
Returns the parent of `x` in a tree of size `n`
### `layout.left(n, x)`
Returns the left child of `x`
### `layout.right(n, x)`
Returns the right child of `x`
### `layout.leaf(n, x)`
Returns true if `x` is a leaf node.
### `layout.lo(n, x)`
Returns the left most ancestor of `x` in the tree
### `layout.hi(n, x)`
Returns the right most ancestor of `x` in the tree
# Credits
(c) 2013 Mikola Lysenko. MIT License