UNPKG

image-classifier

Version:

Machine Learning Image Classifier for NodeJS

207 lines 10.3 kB
"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } }); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); __setModuleDefault(result, mod); return result; }; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var __importDefault = (this && this.__importDefault) || function (mod) { return (mod && mod.__esModule) ? mod : { "default": mod }; }; var fsp = __importStar(require("fs/promises")); var mobilenet = __importStar(require("@tensorflow-models/mobilenet")); var knnClassifier = __importStar(require("@tensorflow-models/knn-classifier")); var Tensorset_1 = __importDefault(require("tensorset/lib/Tensorset")); var tf = __importStar(require("@tensorflow/tfjs-node")); var ImageClassifier = /** @class */ (function () { function ImageClassifier(mobilenet, classifier) { this.mobilenet = mobilenet; this.classifier = classifier; } ImageClassifier.create = function () { return __awaiter(this, void 0, void 0, function () { var classifier, _a, error_1; return __generator(this, function (_b) { switch (_b.label) { case 0: _b.trys.push([0, 2, , 3]); classifier = knnClassifier.create(); _a = ImageClassifier.bind; return [4 /*yield*/, mobilenet.load()]; case 1: return [2 /*return*/, new (_a.apply(ImageClassifier, [void 0, _b.sent(), classifier]))()]; case 2: error_1 = _b.sent(); // ERROR: Mobilenet fails to load throw error_1; case 3: return [2 /*return*/]; } }); }); }; ImageClassifier.load = function (datasetPath) { return __awaiter(this, void 0, void 0, function () { var classifier, dataset, tensorset, _a, error_2; return __generator(this, function (_b) { switch (_b.label) { case 0: _b.trys.push([0, 4, , 5]); classifier = knnClassifier.create(); return [4 /*yield*/, fsp.readFile(datasetPath, { encoding: 'utf-8' })]; case 1: dataset = _b.sent(); return [4 /*yield*/, Tensorset_1.default.parse(dataset)]; case 2: tensorset = _b.sent(); classifier.setClassifierDataset(tensorset); _a = ImageClassifier.bind; return [4 /*yield*/, mobilenet.load()]; case 3: return [2 /*return*/, new (_a.apply(ImageClassifier, [void 0, _b.sent(), classifier]))()]; case 4: error_2 = _b.sent(); // ERROR (Option 1): Attempts to load an invalid dataset // ERROR (Option 2): Mobilenet fails to load throw error_2; case 5: return [2 /*return*/]; } }); }); }; ImageClassifier.prototype.save = function (datasetDestination) { return __awaiter(this, void 0, void 0, function () { var dataset, data, error_3; return __generator(this, function (_a) { switch (_a.label) { case 0: _a.trys.push([0, 3, , 4]); dataset = this.classifier.getClassifierDataset(); return [4 /*yield*/, Tensorset_1.default.stringify(dataset)]; case 1: data = _a.sent(); return [4 /*yield*/, fsp.writeFile(datasetDestination, data)]; case 2: _a.sent(); return [3 /*break*/, 4]; case 3: error_3 = _a.sent(); // ERROR (Option 1): Destination path is not specified and there is no default path // ERROR (Option 2): File could not be written throw error_3; case 4: return [2 /*return*/]; } }); }); }; ImageClassifier.prototype.addExample = function (label, image) { return __awaiter(this, void 0, void 0, function () { var imageData, _a, tensor, error_4; return __generator(this, function (_b) { switch (_b.label) { case 0: _b.trys.push([0, 4, , 5]); if (!(image instanceof Buffer)) return [3 /*break*/, 1]; _a = image; return [3 /*break*/, 3]; case 1: return [4 /*yield*/, fsp.readFile(image)]; case 2: _a = _b.sent(); _b.label = 3; case 3: imageData = _a; tensor = this.mobilenet.infer(tf.node.decodeImage(new Uint8Array(imageData), 3), true); this.classifier.addExample(tensor, label); return [3 /*break*/, 5]; case 4: error_4 = _b.sent(); // ERROR (Option 1): Failed to read file // ERROR (Option 2): File was not a proper image throw error_4; case 5: return [2 /*return*/]; } }); }); }; ImageClassifier.prototype.dropClassifier = function (label) { this.classifier.clearClass(label); }; ImageClassifier.prototype.predict = function (image) { return __awaiter(this, void 0, void 0, function () { var imageData, _a, tensor, error_5; return __generator(this, function (_b) { switch (_b.label) { case 0: _b.trys.push([0, 4, , 5]); if (!(image instanceof Buffer)) return [3 /*break*/, 1]; _a = image; return [3 /*break*/, 3]; case 1: return [4 /*yield*/, fsp.readFile(image)]; case 2: _a = _b.sent(); _b.label = 3; case 3: imageData = _a; tensor = this.mobilenet.infer(tf.node.decodeImage(new Uint8Array(imageData), 3), true); return [2 /*return*/, this.classifier.predictClass(tensor)]; case 4: error_5 = _b.sent(); // ERROR (Option 1): Failed to read file // ERROR (Option 2): File was not a proper image throw error_5; case 5: return [2 /*return*/]; } }); }); }; ImageClassifier.default = ImageClassifier; return ImageClassifier; }()); module.exports = ImageClassifier; //# sourceMappingURL=ImageClassifier.js.map