igv
Version:
Embeddable genomic visualization component based on the Integrative Genomics Viewer
1,393 lines (1,123 loc) • 2.84 MB
JavaScript
function createElementWithString(htmlString){
const tempDiv = document.createElement('div');
tempDiv.innerHTML = htmlString;
return tempDiv.firstElementChild;
}
function div(options) {
return create$1("div", options);
}
function create$1(tag, options) {
const elem = document.createElement(tag);
if (options) {
if (options.class) {
elem.classList.add(options.class);
}
if (options.id) {
elem.id = options.id;
}
if(options.style) {
applyStyle(elem, options.style);
}
}
return elem;
}
function hide(elem) {
const cssStyle = getComputedStyle(elem);
if(cssStyle.display !== "none") {
elem._initialDisplay = cssStyle.display;
}
elem.style.display = "none";
}
function show(elem) {
//const currentDisplay = getComputedStyle(elem).display;
//if (currentDisplay === "none") {
const d = elem._initialDisplay || "block";
elem.style.display = d;
// }
}
function pageCoordinates(e) {
if (e.type.startsWith("touch")) {
const touch = e.touches[0];
return {x: touch.pageX, y: touch.pageY};
} else {
return {x: e.pageX, y: e.pageY}
}
}
function applyStyle(elem, style) {
for (let key of Object.keys(style)) {
elem.style[key] = style[key];
}
}
function guid$2 () {
return ("0000" + (Math.random() * Math.pow(36, 4) << 0).toString(36)).slice(-4);
}
let getMouseXY = (domElement, { clientX, clientY }) => {
// DOMRect object with eight properties: left, top, right, bottom, x, y, width, height
const { left, top, width, height } = domElement.getBoundingClientRect();
const x = clientX - left;
const y = clientY - top;
return { x, y, xNormalized: x/width, yNormalized: y/height, width, height };
};
/**
* Translate the mouse coordinates for the event to the coordinates for the given target element
* @param event
* @param domElement
* @returns {{x: number, y: number}}
*/
function translateMouseCoordinates(event, domElement) {
const { clientX, clientY } = event;
return getMouseXY(domElement, { clientX, clientY });
}
/**
* Generic container for UI components
*/
class Panel {
constructor() {
this.elem = create$1('div', { class: 'igv-ui-panel-column' });
}
add(component) {
if(component instanceof Node) {
this.elem.appendChild(component);
}
else if(typeof component === 'object') {
this.elem.appendChild(component.elem);
}
else {
// Assuming a string, possibly html
const wrapper = div();
wrapper.innerHTML = component;
this.elem.appendChild(wrapper);
this.html = wrapper;
}
}
}
function createCheckbox$1(name, initialState) {
const container = div({class: 'igv-ui-trackgear-popover-check-container'});
const svg = iconMarkup('check', (true === initialState ? '#444' : 'transparent'));
svg.style.borderColor = 'gray';
svg.style.borderWidth = '1px';
svg.style.borderStyle = 'solid';
container.appendChild(svg);
let label = div(); //{ class: 'igv-some-label-class' });
label.textContent = name;
container.appendChild(label);
return container;
}
function createIcon(name, color) {
return iconMarkup(name, color);
}
function iconMarkup(name, color) {
color = color || "currentColor";
let icon = icons[name];
if (!icon) {
console.error(`No icon named: ${name}`);
icon = icons["question"];
}
const svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
svg.setAttributeNS(null,'viewBox', '0 0 ' + icon[0] + ' ' + icon[1]);
const path = document.createElementNS("http://www.w3.org/2000/svg", "path");
path.setAttributeNS(null,'fill', color );
path.setAttributeNS(null,'d', icon[4]);
svg.appendChild(path);
return svg;
}
const icons = {
"check": [512, 512, [], "f00c", "M173.898 439.404l-166.4-166.4c-9.997-9.997-9.997-26.206 0-36.204l36.203-36.204c9.997-9.998 26.207-9.998 36.204 0L192 312.69 432.095 72.596c9.997-9.997 26.207-9.997 36.204 0l36.203 36.204c9.997 9.997 9.997 26.206 0 36.204l-294.4 294.401c-9.998 9.997-26.207 9.997-36.204-.001z"],
"cog": [512, 512, [], "f013", "M444.788 291.1l42.616 24.599c4.867 2.809 7.126 8.618 5.459 13.985-11.07 35.642-29.97 67.842-54.689 94.586a12.016 12.016 0 0 1-14.832 2.254l-42.584-24.595a191.577 191.577 0 0 1-60.759 35.13v49.182a12.01 12.01 0 0 1-9.377 11.718c-34.956 7.85-72.499 8.256-109.219.007-5.49-1.233-9.403-6.096-9.403-11.723v-49.184a191.555 191.555 0 0 1-60.759-35.13l-42.584 24.595a12.016 12.016 0 0 1-14.832-2.254c-24.718-26.744-43.619-58.944-54.689-94.586-1.667-5.366.592-11.175 5.459-13.985L67.212 291.1a193.48 193.48 0 0 1 0-70.199l-42.616-24.599c-4.867-2.809-7.126-8.618-5.459-13.985 11.07-35.642 29.97-67.842 54.689-94.586a12.016 12.016 0 0 1 14.832-2.254l42.584 24.595a191.577 191.577 0 0 1 60.759-35.13V25.759a12.01 12.01 0 0 1 9.377-11.718c34.956-7.85 72.499-8.256 109.219-.007 5.49 1.233 9.403 6.096 9.403 11.723v49.184a191.555 191.555 0 0 1 60.759 35.13l42.584-24.595a12.016 12.016 0 0 1 14.832 2.254c24.718 26.744 43.619 58.944 54.689 94.586 1.667 5.366-.592 11.175-5.459 13.985L444.788 220.9a193.485 193.485 0 0 1 0 70.2zM336 256c0-44.112-35.888-80-80-80s-80 35.888-80 80 35.888 80 80 80 80-35.888 80-80z"],
"exclamation": [192, 512, [], "f12a", "M176 432c0 44.112-35.888 80-80 80s-80-35.888-80-80 35.888-80 80-80 80 35.888 80 80zM25.26 25.199l13.6 272C39.499 309.972 50.041 320 62.83 320h66.34c12.789 0 23.331-10.028 23.97-22.801l13.6-272C167.425 11.49 156.496 0 142.77 0H49.23C35.504 0 24.575 11.49 25.26 25.199z"],
"exclamation-circle": [512, 512, [], "f06a", "M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zm-248 50c-25.405 0-46 20.595-46 46s20.595 46 46 46 46-20.595 46-46-20.595-46-46-46zm-43.673-165.346l7.418 136c.347 6.364 5.609 11.346 11.982 11.346h48.546c6.373 0 11.635-4.982 11.982-11.346l7.418-136c.375-6.874-5.098-12.654-11.982-12.654h-63.383c-6.884 0-12.356 5.78-11.981 12.654z"],
"exclamation-triangle": [576, 512, [], "f071", "M569.517 440.013C587.975 472.007 564.806 512 527.94 512H48.054c-36.937 0-59.999-40.055-41.577-71.987L246.423 23.985c18.467-32.009 64.72-31.951 83.154 0l239.94 416.028zM288 354c-25.405 0-46 20.595-46 46s20.595 46 46 46 46-20.595 46-46-20.595-46-46-46zm-43.673-165.346l7.418 136c.347 6.364 5.609 11.346 11.982 11.346h48.546c6.373 0 11.635-4.982 11.982-11.346l7.418-136c.375-6.874-5.098-12.654-11.982-12.654h-63.383c-6.884 0-12.356 5.78-11.981 12.654z"],
"minus": [448, 512, [], "f068", "M424 318.2c13.3 0 24-10.7 24-24v-76.4c0-13.3-10.7-24-24-24H24c-13.3 0-24 10.7-24 24v76.4c0 13.3 10.7 24 24 24h400z"],
"minus-circle": [512, 512, [], "f056", "M256 8C119 8 8 119 8 256s111 248 248 248 248-111 248-248S393 8 256 8zM124 296c-6.6 0-12-5.4-12-12v-56c0-6.6 5.4-12 12-12h264c6.6 0 12 5.4 12 12v56c0 6.6-5.4 12-12 12H124z"],
"minus-square": [448, 512, [], "f146", "M400 32H48C21.5 32 0 53.5 0 80v352c0 26.5 21.5 48 48 48h352c26.5 0 48-21.5 48-48V80c0-26.5-21.5-48-48-48zM92 296c-6.6 0-12-5.4-12-12v-56c0-6.6 5.4-12 12-12h264c6.6 0 12 5.4 12 12v56c0 6.6-5.4 12-12 12H92z"],
"plus": [448, 512, [], "f067", "M448 294.2v-76.4c0-13.3-10.7-24-24-24H286.2V56c0-13.3-10.7-24-24-24h-76.4c-13.3 0-24 10.7-24 24v137.8H24c-13.3 0-24 10.7-24 24v76.4c0 13.3 10.7 24 24 24h137.8V456c0 13.3 10.7 24 24 24h76.4c13.3 0 24-10.7 24-24V318.2H424c13.3 0 24-10.7 24-24z"],
"plus-circle": [512, 512, [], "f055", "M256 8C119 8 8 119 8 256s111 248 248 248 248-111 248-248S393 8 256 8zm144 276c0 6.6-5.4 12-12 12h-92v92c0 6.6-5.4 12-12 12h-56c-6.6 0-12-5.4-12-12v-92h-92c-6.6 0-12-5.4-12-12v-56c0-6.6 5.4-12 12-12h92v-92c0-6.6 5.4-12 12-12h56c6.6 0 12 5.4 12 12v92h92c6.6 0 12 5.4 12 12v56z"],
"plus-square": [448, 512, [], "f0fe", "M400 32H48C21.5 32 0 53.5 0 80v352c0 26.5 21.5 48 48 48h352c26.5 0 48-21.5 48-48V80c0-26.5-21.5-48-48-48zm-32 252c0 6.6-5.4 12-12 12h-92v92c0 6.6-5.4 12-12 12h-56c-6.6 0-12-5.4-12-12v-92H92c-6.6 0-12-5.4-12-12v-56c0-6.6 5.4-12 12-12h92v-92c0-6.6 5.4-12 12-12h56c6.6 0 12 5.4 12 12v92h92c6.6 0 12 5.4 12 12v56z"],
"question": [384, 512, [], "f128", "M202.021 0C122.202 0 70.503 32.703 29.914 91.026c-7.363 10.58-5.093 25.086 5.178 32.874l43.138 32.709c10.373 7.865 25.132 6.026 33.253-4.148 25.049-31.381 43.63-49.449 82.757-49.449 30.764 0 68.816 19.799 68.816 49.631 0 22.552-18.617 34.134-48.993 51.164-35.423 19.86-82.299 44.576-82.299 106.405V320c0 13.255 10.745 24 24 24h72.471c13.255 0 24-10.745 24-24v-5.773c0-42.86 125.268-44.645 125.268-160.627C377.504 66.256 286.902 0 202.021 0zM192 373.459c-38.196 0-69.271 31.075-69.271 69.271 0 38.195 31.075 69.27 69.271 69.27s69.271-31.075 69.271-69.271-31.075-69.27-69.271-69.27z"],
"save": [448, 512, [], "f0c7", "M433.941 129.941l-83.882-83.882A48 48 0 0 0 316.118 32H48C21.49 32 0 53.49 0 80v352c0 26.51 21.49 48 48 48h352c26.51 0 48-21.49 48-48V163.882a48 48 0 0 0-14.059-33.941zM224 416c-35.346 0-64-28.654-64-64 0-35.346 28.654-64 64-64s64 28.654 64 64c0 35.346-28.654 64-64 64zm96-304.52V212c0 6.627-5.373 12-12 12H76c-6.627 0-12-5.373-12-12V108c0-6.627 5.373-12 12-12h228.52c3.183 0 6.235 1.264 8.485 3.515l3.48 3.48A11.996 11.996 0 0 1 320 111.48z"],
"search": [512, 512, [], "f002", "M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"],
"share": [512, 512, [], "f064", "M503.691 189.836L327.687 37.851C312.281 24.546 288 35.347 288 56.015v80.053C127.371 137.907 0 170.1 0 322.326c0 61.441 39.581 122.309 83.333 154.132 13.653 9.931 33.111-2.533 28.077-18.631C66.066 312.814 132.917 274.316 288 272.085V360c0 20.7 24.3 31.453 39.687 18.164l176.004-152c11.071-9.562 11.086-26.753 0-36.328z"],
"spinner": [512, 512, [], "f110", "M304 48c0 26.51-21.49 48-48 48s-48-21.49-48-48 21.49-48 48-48 48 21.49 48 48zm-48 368c-26.51 0-48 21.49-48 48s21.49 48 48 48 48-21.49 48-48-21.49-48-48-48zm208-208c-26.51 0-48 21.49-48 48s21.49 48 48 48 48-21.49 48-48-21.49-48-48-48zM96 256c0-26.51-21.49-48-48-48S0 229.49 0 256s21.49 48 48 48 48-21.49 48-48zm12.922 99.078c-26.51 0-48 21.49-48 48s21.49 48 48 48 48-21.49 48-48c0-26.509-21.491-48-48-48zm294.156 0c-26.51 0-48 21.49-48 48s21.49 48 48 48 48-21.49 48-48c0-26.509-21.49-48-48-48zM108.922 60.922c-26.51 0-48 21.49-48 48s21.49 48 48 48 48-21.49 48-48-21.491-48-48-48z"],
"square": [448, 512, [], "f0c8", "M400 32H48C21.5 32 0 53.5 0 80v352c0 26.5 21.5 48 48 48h352c26.5 0 48-21.5 48-48V80c0-26.5-21.5-48-48-48z"],
"square-full": [512, 512, [], "f45c", "M512 512H0V0h512v512z"],
"times": [384, 512, [], "f00d", "M323.1 441l53.9-53.9c9.4-9.4 9.4-24.5 0-33.9L279.8 256l97.2-97.2c9.4-9.4 9.4-24.5 0-33.9L323.1 71c-9.4-9.4-24.5-9.4-33.9 0L192 168.2 94.8 71c-9.4-9.4-24.5-9.4-33.9 0L7 124.9c-9.4 9.4-9.4 24.5 0 33.9l97.2 97.2L7 353.2c-9.4 9.4-9.4 24.5 0 33.9L60.9 441c9.4 9.4 24.5 9.4 33.9 0l97.2-97.2 97.2 97.2c9.3 9.3 24.5 9.3 33.9 0z"],
"times-circle": [512, 512, [], "f057", "M256 8C119 8 8 119 8 256s111 248 248 248 248-111 248-248S393 8 256 8zm121.6 313.1c4.7 4.7 4.7 12.3 0 17L338 377.6c-4.7 4.7-12.3 4.7-17 0L256 312l-65.1 65.6c-4.7 4.7-12.3 4.7-17 0L134.4 338c-4.7-4.7-4.7-12.3 0-17l65.6-65-65.6-65.1c-4.7-4.7-4.7-12.3 0-17l39.6-39.6c4.7-4.7 12.3-4.7 17 0l65 65.7 65.1-65.6c4.7-4.7 12.3-4.7 17 0l39.6 39.6c4.7 4.7 4.7 12.3 0 17L312 256l65.6 65.1z"],
"wrench": [512, 512, [], "f0ad", "M481.156 200c9.3 0 15.12 10.155 10.325 18.124C466.295 259.992 420.419 288 368 288c-79.222 0-143.501-63.974-143.997-143.079C223.505 65.469 288.548-.001 368.002 0c52.362.001 98.196 27.949 123.4 69.743C496.24 77.766 490.523 88 481.154 88H376l-40 56 40 56h105.156zm-171.649 93.003L109.255 493.255c-24.994 24.993-65.515 24.994-90.51 0-24.993-24.994-24.993-65.516 0-90.51L218.991 202.5c16.16 41.197 49.303 74.335 90.516 90.503zM104 432c0-13.255-10.745-24-24-24s-24 10.745-24 24 10.745 24 24 24 24-10.745 24-24z"],
};
function attachDialogCloseHandlerWithParent(parent, closeHandler) {
var container = document.createElement("div");
parent.appendChild(container);
container.appendChild(createIcon("times"));
container.addEventListener('click', function (e) {
e.preventDefault();
e.stopPropagation();
closeHandler();
});
}
/**
* Make the target element movable by clicking and dragging on the handle. This is not a general purprose function,
* it makes several options specific to igv dialogs, the primary one being that the
* target is absolutely positioned in pixel coordinates
*/
let dragData; // Its assumed we are only dragging one element at a time.
function makeDraggable(target, handle, constraint) {
handle.addEventListener('mousedown', dragStart.bind(target));
function dragStart(event) {
event.stopPropagation();
event.preventDefault();
const dragFunction = drag.bind(this);
const dragEndFunction = dragEnd.bind(this);
const computedStyle = getComputedStyle(this);
const boundingClientRect = this.getBoundingClientRect();
dragData =
{
constraint,
dragFunction,
dragEndFunction,
screenX: event.screenX,
screenY: event.screenY,
minDy: -boundingClientRect.top, // Don't slide upwards more than this
minDx: -boundingClientRect.left,
top: parseInt(computedStyle.top.replace("px", "")),
left: parseInt(computedStyle.left.replace("px", ""))
};
document.addEventListener('mousemove', dragFunction);
document.addEventListener('mouseup', dragEndFunction);
document.addEventListener('mouseleave', dragEndFunction);
document.addEventListener('mouseexit', dragEndFunction);
}
}
function drag(event) {
if (!dragData) {
console.error("No drag data!");
return
}
event.stopPropagation();
event.preventDefault();
const dx = Math.max(dragData.minDx, event.screenX - dragData.screenX);
const dy = Math.max(dragData.minDy, event.screenY - dragData.screenY);
const left = dragData.left + dx;
const top = dragData.top + dy;
this.style.left = `${left}px`;
this.style.top = `${top}px`;
}
function dragEnd(event) {
if (!dragData) {
console.error("No drag data!");
return
}
event.stopPropagation();
event.preventDefault();
const dragFunction = dragData.dragFunction;
const dragEndFunction = dragData.dragEndFunction;
document.removeEventListener('mousemove', dragFunction);
document.removeEventListener('mouseup', dragEndFunction);
document.removeEventListener('mouseleave', dragEndFunction);
document.removeEventListener('mouseexit', dragEndFunction);
dragData = undefined;
}
class Dialog {
constructor({parent, label, content, okHandler, cancelHandler}) {
this.parent = parent;
const cancel = () => {
this.elem.style.display = 'none';
if (typeof cancelHandler === 'function') {
cancelHandler(this);
}
};
// dialog container
this.elem = div();
this.elem.classList.add('igv-ui-generic-dialog-container', 'igv-ui-center-fixed');
// dialog header
const header = div({class: 'igv-ui-generic-dialog-header'});
this.elem.appendChild(header);
attachDialogCloseHandlerWithParent(header, cancel);
// dialog label
if(label) {
const labelDiv = div({class: 'igv-ui-dialog-one-liner'});
this.elem.appendChild(labelDiv);
labelDiv.innerHTML = label;
}
// input container
content.elem.style.margin = '16px';
this.elem.appendChild(content.elem);
this.content = content;
// ok | cancel
const buttons = div({class: 'igv-ui-generic-dialog-ok-cancel'});
this.elem.appendChild(buttons);
// ok
this.ok = div();
buttons.appendChild(this.ok);
this.ok.textContent = 'OK';
// cancel
this.cancel = div();
buttons.appendChild(this.cancel);
this.cancel.textContent = 'Cancel';
this.callback = undefined;
this.ok.addEventListener('click', e => {
this.elem.style.display = 'none';
if (typeof okHandler === 'function') {
okHandler(this);
} else if (this.callback && typeof this.callback === 'function') {
this.callback(this);
}
});
this.cancel.addEventListener('click', cancel);
makeDraggable(this.elem, header);
// Consume all clicks in component
this.elem.addEventListener('click', (e) => {
e.preventDefault();
e.stopPropagation();
});
}
present(options, e) {
if (options.label && this.label) {
this.label.textContent = options.label;
}
if (options.html) {
const div = this.content.html;
div.innerHTML = options.html;
}
if (options.text) {
const div = this.content.html;
div.innerText = options.text;
}
if (options.value && this.input) {
this.input.value = options.value;
}
if (options.callback) {
this.callback = options.callback;
}
const { top} = e.currentTarget.parentElement.getBoundingClientRect();
this.elem.style.top = `${ top }px`;
this.elem.style.display = 'flex';
}
}
/**
* Covers string literals and String objects
* @param x
* @returns {boolean}
*/
function isString$3(x) {
return typeof x === "string" || x instanceof String
}
// StackOverflow: http://stackoverflow.com/a/10810674/116169
function numberFormatter$1(rawNumber) {
var dec = String(rawNumber).split(/[.,]/),
sep = ',',
decsep = '.';
return dec[0].split('').reverse().reduce(function (prev, now, i) {
return i % 3 === 0 ? prev + sep + now : prev + now;
}).split('').reverse().join('') + (dec[1] ? decsep + dec[1] : '');
}
const splitLines$3 = function (string) {
return string.split(/\n|\r\n|\r/g);
};
function splitStringRespectingQuotes(string, delim) {
var tokens = [],
len = string.length,
i,
n = 0,
quote = false,
c;
if (len > 0) {
tokens[n] = string.charAt(0);
for (i = 1; i < len; i++) {
c = string.charAt(i);
if (c === '"') {
quote = !quote;
} else if (!quote && c === delim) {
n++;
tokens[n] = "";
} else {
tokens[n] += c;
}
}
}
return tokens;
}
function stripQuotes$2(str) {
if(str === undefined) {
return str;
}
if(str.startsWith("'") || str.startsWith('"')) {
str = str.substring(1);
}
if (str.endsWith("'") || str.endsWith('"')) {
str = str.substring(0, str.length - 1);
}
return str;
}
function capitalize(str) {
return str.length > 0 ? str.charAt(0).toUpperCase() + str.slice(1) : str;
}
/**
* Parse a locus string and return a range object. Locus string is of the form chr:start-end. End is optional
*
*/
function parseLocusString$1(string) {
const t1 = string.split(":");
const t2 = t1[1].split("-");
const range = {
chr: t1[0],
start: Number.parseInt(t2[0].replace(/,/g, '')) - 1
};
if (t2.length > 1) {
range.end = Number.parseInt(t2[1].replace(/,/g, ''));
} else {
range.end = range.start + 1;
}
return range;
}
/**
* Return the filename from the path. Example
* https://foo.com/bar.bed?param=2 => bar.bed
* @param urlOrFile
*/
function getFilename$2(urlOrFile) {
if (urlOrFile.name !== undefined) {
return urlOrFile.name
} else if (isString$3(urlOrFile)) {
let index = urlOrFile.lastIndexOf("/");
let filename = index < 0 ? urlOrFile : urlOrFile.substr(index + 1);
//Strip parameters -- handle local files later
index = filename.indexOf("?");
if (index > 0) {
filename = filename.substr(0, index);
}
return filename
} else {
throw Error(`Expected File or string, got ${typeof urlOrFile}`)
}
}
/**
* Test if object is a File or File-like object.
*
* @param object
*/
function isFile(object) {
if(!object) {
return false;
}
return typeof object !== 'function' &&
(object instanceof File ||
(object.hasOwnProperty("name") && typeof object.slice === 'function' && typeof object.arrayBuffer === 'function'))
}
function download(filename, data) {
const element = document.createElement('a');
element.setAttribute('href', data);
element.setAttribute('download', filename);
element.style.display = 'none';
document.body.appendChild(element);
element.click();
document.body.removeChild(element);
}
if (typeof process === 'object' && typeof window === 'undefined') {
global.atob = function (str) {
return Buffer.from(str, 'base64').toString('binary');
};
}
function parseUri(str) {
var o = options,
m = o.parser["loose"].exec(str),
uri = {},
i = 14;
while (i--) uri[o.key[i]] = m[i] || "";
uri[o.q.name] = {};
uri[o.key[12]].replace(o.q.parser, function ($0, $1, $2) {
if ($1) uri[o.q.name][$1] = $2;
});
return uri;
}
const options = {
strictMode: false,
key: ["source", "protocol", "authority", "userInfo", "user", "password", "host", "port", "relative", "path", "directory", "file", "query", "anchor"],
q: {
name: "queryKey",
parser: /(?:^|&)([^&=]*)=?([^&]*)/g
},
parser: {
strict: /^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?(?:#(.*))?)/,
loose: /^(?:(?![^:@]+:[^:@\/]*@)([^:\/?#.]+):)?(?:\/\/)?((?:(([^:@]*)(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?)(((\/(?:[^?#](?![^?#\/]*\.[^?#\/.]+(?:[?#]|$)))*\/?)?([^?#\/]*))(?:\?([^#]*))?(?:#(.*))?)/
}
};
/**
* Resolve a url, which might be a string, function (that returns a string or Promse), or Promise (that resolves to a string)
*
* @param url
* @returns {Promise<*>}
*/
async function resolveURL(url) {
return (typeof url === 'function') ? url() : url;
}
/*! pako 2.1.0 https://github.com/nodeca/pako @license (MIT AND Zlib) */
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
/* eslint-disable space-unary-ops */
/* Public constants ==========================================================*/
/* ===========================================================================*/
//const Z_FILTERED = 1;
//const Z_HUFFMAN_ONLY = 2;
//const Z_RLE = 3;
const Z_FIXED$1 = 4;
//const Z_DEFAULT_STRATEGY = 0;
/* Possible values of the data_type field (though see inflate()) */
const Z_BINARY = 0;
const Z_TEXT = 1;
//const Z_ASCII = 1; // = Z_TEXT
const Z_UNKNOWN$1 = 2;
/*============================================================================*/
function zero$1$1(buf) { let len = buf.length; while (--len >= 0) { buf[len] = 0; } }
// From zutil.h
const STORED_BLOCK = 0;
const STATIC_TREES = 1;
const DYN_TREES = 2;
/* The three kinds of block type */
const MIN_MATCH$1$1 = 3;
const MAX_MATCH$1$1 = 258;
/* The minimum and maximum match lengths */
// From deflate.h
/* ===========================================================================
* Internal compression state.
*/
const LENGTH_CODES$1$1 = 29;
/* number of length codes, not counting the special END_BLOCK code */
const LITERALS$1$1 = 256;
/* number of literal bytes 0..255 */
const L_CODES$1$1 = LITERALS$1$1 + 1 + LENGTH_CODES$1$1;
/* number of Literal or Length codes, including the END_BLOCK code */
const D_CODES$1$1 = 30;
/* number of distance codes */
const BL_CODES$1 = 19;
/* number of codes used to transfer the bit lengths */
const HEAP_SIZE$1 = 2 * L_CODES$1$1 + 1;
/* maximum heap size */
const MAX_BITS$1 = 15;
/* All codes must not exceed MAX_BITS bits */
const Buf_size = 16;
/* size of bit buffer in bi_buf */
/* ===========================================================================
* Constants
*/
const MAX_BL_BITS = 7;
/* Bit length codes must not exceed MAX_BL_BITS bits */
const END_BLOCK = 256;
/* end of block literal code */
const REP_3_6 = 16;
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
const REPZ_3_10 = 17;
/* repeat a zero length 3-10 times (3 bits of repeat count) */
const REPZ_11_138 = 18;
/* repeat a zero length 11-138 times (7 bits of repeat count) */
/* eslint-disable comma-spacing,array-bracket-spacing */
const extra_lbits = /* extra bits for each length code */
new Uint8Array([0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]);
const extra_dbits = /* extra bits for each distance code */
new Uint8Array([0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]);
const extra_blbits = /* extra bits for each bit length code */
new Uint8Array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]);
const bl_order =
new Uint8Array([16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]);
/* eslint-enable comma-spacing,array-bracket-spacing */
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
/* ===========================================================================
* Local data. These are initialized only once.
*/
// We pre-fill arrays with 0 to avoid uninitialized gaps
const DIST_CODE_LEN$1 = 512; /* see definition of array dist_code below */
// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
const static_ltree$1 = new Array((L_CODES$1$1 + 2) * 2);
zero$1$1(static_ltree$1);
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
* below).
*/
const static_dtree$1 = new Array(D_CODES$1$1 * 2);
zero$1$1(static_dtree$1);
/* The static distance tree. (Actually a trivial tree since all codes use
* 5 bits.)
*/
const _dist_code$1 = new Array(DIST_CODE_LEN$1);
zero$1$1(_dist_code$1);
/* Distance codes. The first 256 values correspond to the distances
* 3 .. 258, the last 256 values correspond to the top 8 bits of
* the 15 bit distances.
*/
const _length_code$1 = new Array(MAX_MATCH$1$1 - MIN_MATCH$1$1 + 1);
zero$1$1(_length_code$1);
/* length code for each normalized match length (0 == MIN_MATCH) */
const base_length$1 = new Array(LENGTH_CODES$1$1);
zero$1$1(base_length$1);
/* First normalized length for each code (0 = MIN_MATCH) */
const base_dist$1 = new Array(D_CODES$1$1);
zero$1$1(base_dist$1);
/* First normalized distance for each code (0 = distance of 1) */
function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
this.static_tree = static_tree; /* static tree or NULL */
this.extra_bits = extra_bits; /* extra bits for each code or NULL */
this.extra_base = extra_base; /* base index for extra_bits */
this.elems = elems; /* max number of elements in the tree */
this.max_length = max_length; /* max bit length for the codes */
// show if `static_tree` has data or dummy - needed for monomorphic objects
this.has_stree = static_tree && static_tree.length;
}
let static_l_desc;
let static_d_desc;
let static_bl_desc;
function TreeDesc(dyn_tree, stat_desc) {
this.dyn_tree = dyn_tree; /* the dynamic tree */
this.max_code = 0; /* largest code with non zero frequency */
this.stat_desc = stat_desc; /* the corresponding static tree */
}
const d_code = (dist) => {
return dist < 256 ? _dist_code$1[dist] : _dist_code$1[256 + (dist >>> 7)];
};
/* ===========================================================================
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
const put_short = (s, w) => {
// put_byte(s, (uch)((w) & 0xff));
// put_byte(s, (uch)((ush)(w) >> 8));
s.pending_buf[s.pending++] = (w) & 0xff;
s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
};
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
const send_bits = (s, value, length) => {
if (s.bi_valid > (Buf_size - length)) {
s.bi_buf |= (value << s.bi_valid) & 0xffff;
put_short(s, s.bi_buf);
s.bi_buf = value >> (Buf_size - s.bi_valid);
s.bi_valid += length - Buf_size;
} else {
s.bi_buf |= (value << s.bi_valid) & 0xffff;
s.bi_valid += length;
}
};
const send_code = (s, c, tree) => {
send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
};
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
const bi_reverse = (code, len) => {
let res = 0;
do {
res |= code & 1;
code >>>= 1;
res <<= 1;
} while (--len > 0);
return res >>> 1;
};
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
const bi_flush = (s) => {
if (s.bi_valid === 16) {
put_short(s, s.bi_buf);
s.bi_buf = 0;
s.bi_valid = 0;
} else if (s.bi_valid >= 8) {
s.pending_buf[s.pending++] = s.bi_buf & 0xff;
s.bi_buf >>= 8;
s.bi_valid -= 8;
}
};
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
const gen_bitlen = (s, desc) => {
// deflate_state *s;
// tree_desc *desc; /* the tree descriptor */
const tree = desc.dyn_tree;
const max_code = desc.max_code;
const stree = desc.stat_desc.static_tree;
const has_stree = desc.stat_desc.has_stree;
const extra = desc.stat_desc.extra_bits;
const base = desc.stat_desc.extra_base;
const max_length = desc.stat_desc.max_length;
let h; /* heap index */
let n, m; /* iterate over the tree elements */
let bits; /* bit length */
let xbits; /* extra bits */
let f; /* frequency */
let overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS$1; bits++) {
s.bl_count[bits] = 0;
}
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
for (h = s.heap_max + 1; h < HEAP_SIZE$1; h++) {
n = s.heap[h];
bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
if (bits > max_length) {
bits = max_length;
overflow++;
}
tree[n * 2 + 1]/*.Len*/ = bits;
/* We overwrite tree[n].Dad which is no longer needed */
if (n > max_code) { continue; } /* not a leaf node */
s.bl_count[bits]++;
xbits = 0;
if (n >= base) {
xbits = extra[n - base];
}
f = tree[n * 2]/*.Freq*/;
s.opt_len += f * (bits + xbits);
if (has_stree) {
s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
}
}
if (overflow === 0) { return; }
// Tracev((stderr,"\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits = max_length - 1;
while (s.bl_count[bits] === 0) { bits--; }
s.bl_count[bits]--; /* move one leaf down the tree */
s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
s.bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits !== 0; bits--) {
n = s.bl_count[bits];
while (n !== 0) {
m = s.heap[--h];
if (m > max_code) { continue; }
if (tree[m * 2 + 1]/*.Len*/ !== bits) {
// Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
tree[m * 2 + 1]/*.Len*/ = bits;
}
n--;
}
}
};
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
const gen_codes = (tree, max_code, bl_count) => {
// ct_data *tree; /* the tree to decorate */
// int max_code; /* largest code with non zero frequency */
// ushf *bl_count; /* number of codes at each bit length */
const next_code = new Array(MAX_BITS$1 + 1); /* next code value for each bit length */
let code = 0; /* running code value */
let bits; /* bit index */
let n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS$1; bits++) {
code = (code + bl_count[bits - 1]) << 1;
next_code[bits] = code;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
// "inconsistent bit counts");
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
let len = tree[n * 2 + 1]/*.Len*/;
if (len === 0) { continue; }
/* Now reverse the bits */
tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
//Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
// n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
}
};
/* ===========================================================================
* Initialize the various 'constant' tables.
*/
const tr_static_init = () => {
let n; /* iterates over tree elements */
let bits; /* bit counter */
let length; /* length value */
let code; /* code value */
let dist; /* distance index */
const bl_count = new Array(MAX_BITS$1 + 1);
/* number of codes at each bit length for an optimal tree */
// do check in _tr_init()
//if (static_init_done) return;
/* For some embedded targets, global variables are not initialized: */
/*#ifdef NO_INIT_GLOBAL_POINTERS
static_l_desc.static_tree = static_ltree;
static_l_desc.extra_bits = extra_lbits;
static_d_desc.static_tree = static_dtree;
static_d_desc.extra_bits = extra_dbits;
static_bl_desc.extra_bits = extra_blbits;
#endif*/
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES$1$1 - 1; code++) {
base_length$1[code] = length;
for (n = 0; n < (1 << extra_lbits[code]); n++) {
_length_code$1[length++] = code;
}
}
//Assert (length == 256, "tr_static_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
_length_code$1[length - 1] = code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0; code < 16; code++) {
base_dist$1[code] = dist;
for (n = 0; n < (1 << extra_dbits[code]); n++) {
_dist_code$1[dist++] = code;
}
}
//Assert (dist == 256, "tr_static_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for (; code < D_CODES$1$1; code++) {
base_dist$1[code] = dist << 7;
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
_dist_code$1[256 + dist++] = code;
}
}
//Assert (dist == 256, "tr_static_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS$1; bits++) {
bl_count[bits] = 0;
}
n = 0;
while (n <= 143) {
static_ltree$1[n * 2 + 1]/*.Len*/ = 8;
n++;
bl_count[8]++;
}
while (n <= 255) {
static_ltree$1[n * 2 + 1]/*.Len*/ = 9;
n++;
bl_count[9]++;
}
while (n <= 279) {
static_ltree$1[n * 2 + 1]/*.Len*/ = 7;
n++;
bl_count[7]++;
}
while (n <= 287) {
static_ltree$1[n * 2 + 1]/*.Len*/ = 8;
n++;
bl_count[8]++;
}
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes(static_ltree$1, L_CODES$1$1 + 1, bl_count);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES$1$1; n++) {
static_dtree$1[n * 2 + 1]/*.Len*/ = 5;
static_dtree$1[n * 2]/*.Code*/ = bi_reverse(n, 5);
}
// Now data ready and we can init static trees
static_l_desc = new StaticTreeDesc(static_ltree$1, extra_lbits, LITERALS$1$1 + 1, L_CODES$1$1, MAX_BITS$1);
static_d_desc = new StaticTreeDesc(static_dtree$1, extra_dbits, 0, D_CODES$1$1, MAX_BITS$1);
static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES$1, MAX_BL_BITS);
//static_init_done = true;
};
/* ===========================================================================
* Initialize a new block.
*/
const init_block = (s) => {
let n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES$1$1; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
for (n = 0; n < D_CODES$1$1; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
for (n = 0; n < BL_CODES$1; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
s.opt_len = s.static_len = 0;
s.sym_next = s.matches = 0;
};
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
const bi_windup = (s) =>
{
if (s.bi_valid > 8) {
put_short(s, s.bi_buf);
} else if (s.bi_valid > 0) {
//put_byte(s, (Byte)s->bi_buf);
s.pending_buf[s.pending++] = s.bi_buf;
}
s.bi_buf = 0;
s.bi_valid = 0;
};
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
const smaller = (tree, n, m, depth) => {
const _n2 = n * 2;
const _m2 = m * 2;
return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
(tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
};
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
const pqdownheap = (s, tree, k) => {
// deflate_state *s;
// ct_data *tree; /* the tree to restore */
// int k; /* node to move down */
const v = s.heap[k];
let j = k << 1; /* left son of k */
while (j <= s.heap_len) {
/* Set j to the smallest of the two sons: */
if (j < s.heap_len &&
smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
j++;
}
/* Exit if v is smaller than both sons */
if (smaller(tree, v, s.heap[j], s.depth)) { break; }
/* Exchange v with the smallest son */
s.heap[k] = s.heap[j];
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
s.heap[k] = v;
};
// inlined manually
// const SMALLEST = 1;
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
const compress_block = (s, ltree, dtree) => {
// deflate_state *s;
// const ct_data *ltree; /* literal tree */
// const ct_data *dtree; /* distance tree */
let dist; /* distance of matched string */
let lc; /* match length or unmatched char (if dist == 0) */
let sx = 0; /* running index in sym_buf */
let code; /* the code to send */
let extra; /* number of extra bits to send */
if (s.sym_next !== 0) {
do {
dist = s.pending_buf[s.sym_buf + sx++] & 0xff;
dist += (s.pending_buf[s.sym_buf + sx++] & 0xff) << 8;
lc = s.pending_buf[s.sym_buf + sx++];
if (dist === 0) {
send_code(s, lc, ltree); /* send a literal byte */
//Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code = _length_code$1[lc];
send_code(s, code + LITERALS$1$1 + 1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra !== 0) {
lc -= base_length$1[code];
send_bits(s, lc, extra); /* send the extra length bits */
}
dist--; /* dist is now the match distance - 1 */
code = d_code(dist);
//Assert (code < D_CODES, "bad d_code");
send_code(s, code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra !== 0) {
dist -= base_dist$1[code];
send_bits(s, dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
/* Check that the overlay between pending_buf and sym_buf is ok: */
//Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
} while (sx < s.sym_next);
}
send_code(s, END_BLOCK, ltree);
};
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
const build_tree = (s, desc) => {
// deflate_state *s;
// tree_desc *desc; /* the tree descriptor */
const tree = desc.dyn_tree;
const stree = desc.stat_desc.static_tree;
const has_stree = desc.stat_desc.has_stree;
const elems = desc.stat_desc.elems;
let n, m; /* iterate over heap elements */
let max_code = -1; /* largest code with non zero frequency */
let node; /* new node being created */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
s.heap_len = 0;
s.heap_max = HEAP_SIZE$1;
for (n = 0; n < elems; n++) {
if (tree[n * 2]/*.Freq*/ !== 0) {
s.heap[++s.heap_len] = max_code = n;
s.depth[n] = 0;
} else {
tree[n * 2 + 1]/*.Len*/ = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (s.heap_len < 2) {
node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[node * 2]/*.Freq*/ = 1;
s.depth[node] = 0;
s.opt_len--;
if (has_stree) {
s.static_len -= stree[node * 2 + 1]/*.Len*/;
}
/* node is 0 or 1 so it does not have extra bits */
}
desc.max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
node = elems; /* next internal node of the tree */
do {
//pqremove(s, tree, n); /* n = node of least frequency */
/*** pqremove ***/
n = s.heap[1/*SMALLEST*/];
s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
pqdownheap(s, tree, 1/*SMALLEST*/);
/***/
m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
s.heap[--s.heap_max] = m;
/* Create a new node father of n and m */
tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
/* and insert the new node in the heap */
s.heap[1/*SMALLEST*/] = node++;
pqdownheap(s, tree, 1/*SMALLEST*/);
} while (s.heap_len >= 2);
s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(s, desc);
/* The field len is now set, we can generate the bit codes */
gen_codes(tree, max_code, s.bl_count);
};
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
const scan_tree = (s, tree, max_code) => {
// deflate_state *s;
// ct_data *tree; /* the tree to be scanned */
// int max_code; /* and its largest code of non zero frequency */
let n; /* iterates over all tree elements */
let prevlen = -1; /* last emitted length */
let curlen; /* length of current code */
let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
let count = 0; /* repeat count of the current code */
let max_count = 7; /* max repeat count */
let min_count = 4; /* min repeat count */
if (nextlen === 0) {
max_count = 138;
min_count = 3;
}
tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
if (++count < max_count && curlen === nextlen) {
continue;
} else if (count < min_count) {
s.bl_tree[curlen * 2]/*.Freq*/ += count;
} else if (curlen !== 0) {
if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
} else if (count <= 10) {
s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
} else {
s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
}
count = 0;
prevlen = curlen;
if (nextlen === 0) {
max_count = 138;
min_count = 3;
} else if (curlen === nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
};
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
const send_tree = (s, tree, max_code) => {
// deflate_state *s;
// ct_data *tree; /* the tree to be scanned */
// int max_code; /* and its largest code of non zero frequency */
let n; /* iterates over all tree elements */
let prevlen = -1; /* last emitted length */
let curlen; /* length of current code */
let nextlen = tree[0 * 2