hive-js-dev
Version:
Steem.js the JavaScript API for Steem blockchain
219 lines (163 loc) • 5.51 kB
JavaScript
'use strict';
var assert = require('assert'); // from github.com/bitcoinjs/bitcoinjs-lib from github.com/cryptocoinjs/ecdsa
var crypto = require('./hash');
var enforceType = require('./enforce_types');
var BigInteger = require('bigi');
var ECSignature = require('./ecsignature');
// https://tools.ietf.org/html/rfc6979#section-3.2
function deterministicGenerateK(curve, hash, d, checkSig, nonce) {
enforceType('Buffer', hash);
enforceType(BigInteger, d);
if (nonce) {
hash = crypto.sha256(Buffer.concat([hash, new Buffer(nonce)]));
}
// sanity check
assert.equal(hash.length, 32, 'Hash must be 256 bit');
var x = d.toBuffer(32);
var k = new Buffer(32);
var v = new Buffer(32);
// Step B
v.fill(1);
// Step C
k.fill(0);
// Step D
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k);
// Step E
v = crypto.HmacSHA256(v, k);
// Step F
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k);
// Step G
v = crypto.HmacSHA256(v, k);
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = crypto.HmacSHA256(v, k);
var T = BigInteger.fromBuffer(v);
// Step H3, repeat until T is within the interval [1, n - 1]
while (T.signum() <= 0 || T.compareTo(curve.n) >= 0 || !checkSig(T)) {
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0])]), k);
v = crypto.HmacSHA256(v, k);
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = crypto.HmacSHA256(v, k);
T = BigInteger.fromBuffer(v);
}
return T;
}
function sign(curve, hash, d, nonce) {
var e = BigInteger.fromBuffer(hash);
var n = curve.n;
var G = curve.G;
var r, s;
var k = deterministicGenerateK(curve, hash, d, function (k) {
// find canonically valid signature
var Q = G.multiply(k);
if (curve.isInfinity(Q)) return false;
r = Q.affineX.mod(n);
if (r.signum() === 0) return false;
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
if (s.signum() === 0) return false;
return true;
}, nonce);
var N_OVER_TWO = n.shiftRight(1);
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s);
}
return new ECSignature(r, s);
}
function verifyRaw(curve, e, signature, Q) {
var n = curve.n;
var G = curve.G;
var r = signature.r;
var s = signature.s;
// 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false;
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false;
// c = s^-1 mod n
var c = s.modInverse(n);
// 1.4.4 Compute u1 = es^−1 mod n
// u2 = rs^−1 mod n
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
// 1.4.5 Compute R = (xR, yR) = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2);
// 1.4.5 (cont.) Enforce R is not at infinity
if (curve.isInfinity(R)) return false;
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX;
// 1.4.7 Set v = xR mod n
var v = xR.mod(n);
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r);
}
function verify(curve, hash, signature, Q) {
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash);
return verifyRaw(curve, e, signature, Q);
}
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
function recoverPubKey(curve, e, signature, i) {
assert.strictEqual(i & 3, i, 'Recovery param is more than two bits');
var n = curve.n;
var G = curve.G;
var r = signature.r;
var s = signature.s;
assert(r.signum() > 0 && r.compareTo(n) < 0, 'Invalid r value');
assert(s.signum() > 0 && s.compareTo(n) < 0, 'Invalid s value');
// A set LSB signifies that the y-coordinate is odd
var isYOdd = i & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1;
// 1.1 Let x = r + jn
var x = isSecondKey ? r.add(n) : r;
var R = curve.pointFromX(isYOdd, x);
// 1.4 Check that nR is at infinity
var nR = R.multiply(n);
assert(curve.isInfinity(nR), 'nR is not a valid curve point');
// Compute -e from e
var eNeg = e.negate().mod(n);
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var rInv = r.modInverse(n);
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv);
curve.validate(Q);
return Q;
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam(curve, e, signature, Q) {
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(curve, e, signature, i);
// 1.6.2 Verify Q
if (Qprime.equals(Q)) {
return i;
}
}
throw new Error('Unable to find valid recovery factor');
}
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify,
verifyRaw: verifyRaw
};