UNPKG

hive-js-dev

Version:

Steem.js the JavaScript API for Steem blockchain

219 lines (163 loc) 5.51 kB
'use strict'; var assert = require('assert'); // from github.com/bitcoinjs/bitcoinjs-lib from github.com/cryptocoinjs/ecdsa var crypto = require('./hash'); var enforceType = require('./enforce_types'); var BigInteger = require('bigi'); var ECSignature = require('./ecsignature'); // https://tools.ietf.org/html/rfc6979#section-3.2 function deterministicGenerateK(curve, hash, d, checkSig, nonce) { enforceType('Buffer', hash); enforceType(BigInteger, d); if (nonce) { hash = crypto.sha256(Buffer.concat([hash, new Buffer(nonce)])); } // sanity check assert.equal(hash.length, 32, 'Hash must be 256 bit'); var x = d.toBuffer(32); var k = new Buffer(32); var v = new Buffer(32); // Step B v.fill(1); // Step C k.fill(0); // Step D k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k); // Step E v = crypto.HmacSHA256(v, k); // Step F k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k); // Step G v = crypto.HmacSHA256(v, k); // Step H1/H2a, ignored as tlen === qlen (256 bit) // Step H2b v = crypto.HmacSHA256(v, k); var T = BigInteger.fromBuffer(v); // Step H3, repeat until T is within the interval [1, n - 1] while (T.signum() <= 0 || T.compareTo(curve.n) >= 0 || !checkSig(T)) { k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0])]), k); v = crypto.HmacSHA256(v, k); // Step H1/H2a, again, ignored as tlen === qlen (256 bit) // Step H2b again v = crypto.HmacSHA256(v, k); T = BigInteger.fromBuffer(v); } return T; } function sign(curve, hash, d, nonce) { var e = BigInteger.fromBuffer(hash); var n = curve.n; var G = curve.G; var r, s; var k = deterministicGenerateK(curve, hash, d, function (k) { // find canonically valid signature var Q = G.multiply(k); if (curve.isInfinity(Q)) return false; r = Q.affineX.mod(n); if (r.signum() === 0) return false; s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n); if (s.signum() === 0) return false; return true; }, nonce); var N_OVER_TWO = n.shiftRight(1); // enforce low S values, see bip62: 'low s values in signatures' if (s.compareTo(N_OVER_TWO) > 0) { s = n.subtract(s); } return new ECSignature(r, s); } function verifyRaw(curve, e, signature, Q) { var n = curve.n; var G = curve.G; var r = signature.r; var s = signature.s; // 1.4.1 Enforce r and s are both integers in the interval [1, n − 1] if (r.signum() <= 0 || r.compareTo(n) >= 0) return false; if (s.signum() <= 0 || s.compareTo(n) >= 0) return false; // c = s^-1 mod n var c = s.modInverse(n); // 1.4.4 Compute u1 = es^−1 mod n // u2 = rs^−1 mod n var u1 = e.multiply(c).mod(n); var u2 = r.multiply(c).mod(n); // 1.4.5 Compute R = (xR, yR) = u1G + u2Q var R = G.multiplyTwo(u1, Q, u2); // 1.4.5 (cont.) Enforce R is not at infinity if (curve.isInfinity(R)) return false; // 1.4.6 Convert the field element R.x to an integer var xR = R.affineX; // 1.4.7 Set v = xR mod n var v = xR.mod(n); // 1.4.8 If v = r, output "valid", and if v != r, output "invalid" return v.equals(r); } function verify(curve, hash, signature, Q) { // 1.4.2 H = Hash(M), already done by the user // 1.4.3 e = H var e = BigInteger.fromBuffer(hash); return verifyRaw(curve, e, signature, Q); } /** * Recover a public key from a signature. * * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public * Key Recovery Operation". * * http://www.secg.org/download/aid-780/sec1-v2.pdf */ function recoverPubKey(curve, e, signature, i) { assert.strictEqual(i & 3, i, 'Recovery param is more than two bits'); var n = curve.n; var G = curve.G; var r = signature.r; var s = signature.s; assert(r.signum() > 0 && r.compareTo(n) < 0, 'Invalid r value'); assert(s.signum() > 0 && s.compareTo(n) < 0, 'Invalid s value'); // A set LSB signifies that the y-coordinate is odd var isYOdd = i & 1; // The more significant bit specifies whether we should use the // first or second candidate key. var isSecondKey = i >> 1; // 1.1 Let x = r + jn var x = isSecondKey ? r.add(n) : r; var R = curve.pointFromX(isYOdd, x); // 1.4 Check that nR is at infinity var nR = R.multiply(n); assert(curve.isInfinity(nR), 'nR is not a valid curve point'); // Compute -e from e var eNeg = e.negate().mod(n); // 1.6.1 Compute Q = r^-1 (sR - eG) // Q = r^-1 (sR + -eG) var rInv = r.modInverse(n); var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv); curve.validate(Q); return Q; } /** * Calculate pubkey extraction parameter. * * When extracting a pubkey from a signature, we have to * distinguish four different cases. Rather than putting this * burden on the verifier, Bitcoin includes a 2-bit value with the * signature. * * This function simply tries all four cases and returns the value * that resulted in a successful pubkey recovery. */ function calcPubKeyRecoveryParam(curve, e, signature, Q) { for (var i = 0; i < 4; i++) { var Qprime = recoverPubKey(curve, e, signature, i); // 1.6.2 Verify Q if (Qprime.equals(Q)) { return i; } } throw new Error('Unable to find valid recovery factor'); } module.exports = { calcPubKeyRecoveryParam: calcPubKeyRecoveryParam, deterministicGenerateK: deterministicGenerateK, recoverPubKey: recoverPubKey, sign: sign, verify: verify, verifyRaw: verifyRaw };