UNPKG

highcharts

Version:
241 lines (240 loc) 8.13 kB
/* * * * Highcharts cylinder - a 3D series * * (c) 2010-2021 Highsoft AS * * Author: Kacper Madej * * License: www.highcharts.com/license * * !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!! * * */ 'use strict'; import Color from '../../Core/Color/Color.js'; var color = Color.parse; import H from '../../Core/Globals.js'; var charts = H.charts, deg2rad = H.deg2rad, RendererProto = H.Renderer.prototype; import Math3D from '../../Extensions/Math3D.js'; var perspective = Math3D.perspective; import U from '../../Core/Utilities.js'; var merge = U.merge, pick = U.pick; /* * * * Composition * * */ var cuboidPath = RendererProto.cuboidPath; // Check if a path is simplified. The simplified path contains only lineTo // segments, whereas non-simplified contain curves. var isSimplified = function (path) { return !path.some(function (seg) { return seg[0] === 'C'; }); }; // cylinder extends cuboid var cylinderMethods = merge(RendererProto.elements3d.cuboid, { parts: ['top', 'bottom', 'front', 'back'], pathType: 'cylinder', fillSetter: function (fill) { this.singleSetterForParts('fill', null, { front: fill, back: fill, top: color(fill).brighten(0.1).get(), bottom: color(fill).brighten(-0.1).get() }); // fill for animation getter (#6776) this.color = this.fill = fill; return this; } }); RendererProto.elements3d.cylinder = cylinderMethods; RendererProto.cylinder = function (shapeArgs) { return this.element3d('cylinder', shapeArgs); }; // Generates paths and zIndexes. RendererProto.cylinderPath = function (shapeArgs) { var renderer = this, chart = charts[renderer.chartIndex], // decide zIndexes of parts based on cubiod logic, for consistency. cuboidData = cuboidPath.call(renderer, shapeArgs), isTopFirst = !cuboidData.isTop, isFronFirst = !cuboidData.isFront, top = renderer.getCylinderEnd(chart, shapeArgs), bottom = renderer.getCylinderEnd(chart, shapeArgs, true); return { front: renderer.getCylinderFront(top, bottom), back: renderer.getCylinderBack(top, bottom), top: top, bottom: bottom, zIndexes: { top: isTopFirst ? 3 : 0, bottom: isTopFirst ? 0 : 3, front: isFronFirst ? 2 : 1, back: isFronFirst ? 1 : 2, group: cuboidData.zIndexes.group } }; }; // Returns cylinder Front path RendererProto.getCylinderFront = function (topPath, bottomPath) { var path = topPath.slice(0, 3); if (isSimplified(bottomPath)) { var move = bottomPath[0]; if (move[0] === 'M') { path.push(bottomPath[2]); path.push(bottomPath[1]); path.push(['L', move[1], move[2]]); } } else { var move = bottomPath[0], curve1 = bottomPath[1], curve2 = bottomPath[2]; if (move[0] === 'M' && curve1[0] === 'C' && curve2[0] === 'C') { path.push(['L', curve2[5], curve2[6]]); path.push(['C', curve2[3], curve2[4], curve2[1], curve2[2], curve1[5], curve1[6]]); path.push(['C', curve1[3], curve1[4], curve1[1], curve1[2], move[1], move[2]]); } } path.push(['Z']); return path; }; // Returns cylinder Back path RendererProto.getCylinderBack = function (topPath, bottomPath) { var path = []; if (isSimplified(topPath)) { var move = topPath[0], line2 = topPath[2]; if (move[0] === 'M' && line2[0] === 'L') { path.push(['M', line2[1], line2[2]]); path.push(topPath[3]); // End at start path.push(['L', move[1], move[2]]); } } else { if (topPath[2][0] === 'C') { path.push(['M', topPath[2][5], topPath[2][6]]); } path.push(topPath[3], topPath[4]); } if (isSimplified(bottomPath)) { var move = bottomPath[0]; if (move[0] === 'M') { path.push(['L', move[1], move[2]]); path.push(bottomPath[3]); path.push(bottomPath[2]); } } else { var curve2 = bottomPath[2], curve3 = bottomPath[3], curve4 = bottomPath[4]; if (curve2[0] === 'C' && curve3[0] === 'C' && curve4[0] === 'C') { path.push(['L', curve4[5], curve4[6]]); path.push(['C', curve4[3], curve4[4], curve4[1], curve4[2], curve3[5], curve3[6]]); path.push(['C', curve3[3], curve3[4], curve3[1], curve3[2], curve2[5], curve2[6]]); } } path.push(['Z']); return path; }; // Retruns cylinder path for top or bottom RendererProto.getCylinderEnd = function (chart, shapeArgs, isBottom) { // A half of the smaller one out of width or depth (optional, because // there's no depth for a funnel that reuses the code) var depth = pick(shapeArgs.depth, shapeArgs.width), radius = Math.min(shapeArgs.width, depth) / 2, // Approximated longest diameter angleOffset = deg2rad * (chart.options.chart.options3d.beta - 90 + (shapeArgs.alphaCorrection || 0)), // Could be top or bottom of the cylinder y = shapeArgs.y + (isBottom ? shapeArgs.height : 0), // Use cubic Bezier curve to draw a cricle in x,z (y is constant). // More math. at spencermortensen.com/articles/bezier-circle/ c = 0.5519 * radius, centerX = shapeArgs.width / 2 + shapeArgs.x, centerZ = depth / 2 + shapeArgs.z, // points could be generated in a loop, but readability will plummet points = [{ x: 0, y: y, z: radius }, { x: c, y: y, z: radius }, { x: radius, y: y, z: c }, { x: radius, y: y, z: 0 }, { x: radius, y: y, z: -c }, { x: c, y: y, z: -radius }, { x: 0, y: y, z: -radius }, { x: -c, y: y, z: -radius }, { x: -radius, y: y, z: -c }, { x: -radius, y: y, z: 0 }, { x: -radius, y: y, z: c }, { x: -c, y: y, z: radius }, { x: 0, y: y, z: radius }], cosTheta = Math.cos(angleOffset), sinTheta = Math.sin(angleOffset), perspectivePoints, path, x, z; // rotete to match chart's beta and translate to the shape center points.forEach(function (point, i) { x = point.x; z = point.z; // x′ = (x * cosθ − z * sinθ) + centerX // z′ = (z * cosθ + x * sinθ) + centerZ points[i].x = (x * cosTheta - z * sinTheta) + centerX; points[i].z = (z * cosTheta + x * sinTheta) + centerZ; }); perspectivePoints = perspective(points, chart, true); // check for sub-pixel curve issue, compare front and back edges if (Math.abs(perspectivePoints[3].y - perspectivePoints[9].y) < 2.5 && Math.abs(perspectivePoints[0].y - perspectivePoints[6].y) < 2.5) { // use simplied shape path = this.toLinePath([ perspectivePoints[0], perspectivePoints[3], perspectivePoints[6], perspectivePoints[9] ], true); } else { // or default curved path to imitate ellipse (2D circle) path = this.getCurvedPath(perspectivePoints); } return path; }; // Returns curved path in format of: // [ M, x, y, ...[C, cp1x, cp2y, cp2x, cp2y, epx, epy]*n_times ] // (cp - control point, ep - end point) RendererProto.getCurvedPath = function (points) { var path = [['M', points[0].x, points[0].y]], limit = points.length - 2, i; for (i = 1; i < limit; i += 3) { path.push([ 'C', points[i].x, points[i].y, points[i + 1].x, points[i + 1].y, points[i + 2].x, points[i + 2].y ]); } return path; };