UNPKG

highcharts

Version:
1,190 lines 64.3 kB
/* * * * Marker clusters module. * * (c) 2010-2021 Torstein Honsi * * Author: Wojciech Chmiel * * License: www.highcharts.com/license * * !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!! * * */ 'use strict'; import A from '../Core/Animation/AnimationUtilities.js'; var animObject = A.animObject; import Chart from '../Core/Chart/Chart.js'; import O from '../Core/Options.js'; var defaultOptions = O.defaultOptions; import palette from '../Core/Color/Palette.js'; import Point from '../Core/Series/Point.js'; import Series from '../Core/Series/Series.js'; import SeriesRegistry from '../Core/Series/SeriesRegistry.js'; var seriesTypes = SeriesRegistry.seriesTypes; import SVGRenderer from '../Core/Renderer/SVG/SVGRenderer.js'; import U from '../Core/Utilities.js'; var addEvent = U.addEvent, defined = U.defined, error = U.error, isArray = U.isArray, isFunction = U.isFunction, isObject = U.isObject, isNumber = U.isNumber, merge = U.merge, objectEach = U.objectEach, relativeLength = U.relativeLength, syncTimeout = U.syncTimeout; /** * Function callback when a cluster is clicked. * * @callback Highcharts.MarkerClusterDrillCallbackFunction * * @param {Highcharts.Point} this * The point where the event occured. * * @param {Highcharts.PointClickEventObject} event * Event arguments. */ ''; // detach doclets from following code /* eslint-disable no-invalid-this */ import Axis from '../Core/Axis/Axis.js'; var Scatter = seriesTypes.scatter, baseGeneratePoints = Series.prototype.generatePoints, stateIdCounter = 0, // Points that ids are included in the oldPointsStateId array // are hidden before animation. Other ones are destroyed. oldPointsStateId = []; /** * Options for marker clusters, the concept of sampling the data * values into larger blocks in order to ease readability and * increase performance of the JavaScript charts. * * Note: marker clusters module is not working with `boost` * and `draggable-points` modules. * * The marker clusters feature requires the marker-clusters.js * file to be loaded, found in the modules directory of the download * package, or online at [code.highcharts.com/modules/marker-clusters.js * ](code.highcharts.com/modules/marker-clusters.js). * * @sample maps/marker-clusters/europe * Maps marker clusters * @sample highcharts/marker-clusters/basic * Scatter marker clusters * @sample maps/marker-clusters/optimized-kmeans * Marker clusters with colorAxis * * @product highcharts highmaps * @since 8.0.0 * @optionparent plotOptions.scatter.cluster * * @private */ var clusterDefaultOptions = { /** * Whether to enable the marker-clusters module. * * @sample maps/marker-clusters/basic * Maps marker clusters * @sample highcharts/marker-clusters/basic * Scatter marker clusters */ enabled: false, /** * When set to `false` prevent cluster overlapping - this option * works only when `layoutAlgorithm.type = "grid"`. * * @sample highcharts/marker-clusters/grid * Prevent overlapping */ allowOverlap: true, /** * Options for the cluster marker animation. * @type {boolean|Partial<Highcharts.AnimationOptionsObject>} * @default { "duration": 500 } */ animation: { /** @ignore-option */ duration: 500 }, /** * Zoom the plot area to the cluster points range when a cluster is clicked. */ drillToCluster: true, /** * The minimum amount of points to be combined into a cluster. * This value has to be greater or equal to 2. * * @sample highcharts/marker-clusters/basic * At least three points in the cluster */ minimumClusterSize: 2, /** * Options for layout algorithm. Inside there * are options to change the type of the algorithm, gridSize, * distance or iterations. */ layoutAlgorithm: { /** * Type of the algorithm used to combine points into a cluster. * There are three available algorithms: * * 1) `grid` - grid-based clustering technique. Points are assigned * to squares of set size depending on their position on the plot * area. Points inside the grid square are combined into a cluster. * The grid size can be controlled by `gridSize` property * (grid size changes at certain zoom levels). * * 2) `kmeans` - based on K-Means clustering technique. In the * first step, points are divided using the grid method (distance * property is a grid size) to find the initial amount of clusters. * Next, each point is classified by computing the distance between * each cluster center and that point. When the closest cluster * distance is lower than distance property set by a user the point * is added to this cluster otherwise is classified as `noise`. The * algorithm is repeated until each cluster center not change its * previous position more than one pixel. This technique is more * accurate but also more time consuming than the `grid` algorithm, * especially for big datasets. * * 3) `optimizedKmeans` - based on K-Means clustering technique. This * algorithm uses k-means algorithm only on the chart initialization * or when chart extremes have greater range than on initialization. * When a chart is redrawn the algorithm checks only clustered points * distance from the cluster center and rebuild it when the point is * spaced enough to be outside the cluster. It provides performance * improvement and more stable clusters position yet can be used rather * on small and sparse datasets. * * By default, the algorithm depends on visible quantity of points * and `kmeansThreshold`. When there are more visible points than the * `kmeansThreshold` the `grid` algorithm is used, otherwise `kmeans`. * * The custom clustering algorithm can be added by assigning a callback * function as the type property. This function takes an array of * `processedXData`, `processedYData`, `processedXData` indexes and * `layoutAlgorithm` options as arguments and should return an object * with grouped data. * * The algorithm should return an object like that: * <pre>{ * clusterId1: [{ * x: 573, * y: 285, * index: 1 // point index in the data array * }, { * x: 521, * y: 197, * index: 2 * }], * clusterId2: [{ * ... * }] * ... * }</pre> * * `clusterId` (example above - unique id of a cluster or noise) * is an array of points belonging to a cluster. If the * array has only one point or fewer points than set in * `cluster.minimumClusterSize` it won't be combined into a cluster. * * @sample maps/marker-clusters/optimized-kmeans * Optimized K-Means algorithm * @sample highcharts/marker-clusters/kmeans * K-Means algorithm * @sample highcharts/marker-clusters/grid * Grid algorithm * @sample maps/marker-clusters/custom-alg * Custom algorithm * * @type {string|Function} * @see [cluster.minimumClusterSize](#plotOptions.scatter.marker.cluster.minimumClusterSize) * @apioption plotOptions.scatter.cluster.layoutAlgorithm.type */ /** * When `type` is set to the `grid`, * `gridSize` is a size of a grid square element either as a number * defining pixels, or a percentage defining a percentage * of the plot area width. * * @type {number|string} */ gridSize: 50, /** * When `type` is set to `kmeans`, * `iterations` are the number of iterations that this algorithm will be * repeated to find clusters positions. * * @type {number} * @apioption plotOptions.scatter.cluster.layoutAlgorithm.iterations */ /** * When `type` is set to `kmeans`, * `distance` is a maximum distance between point and cluster center * so that this point will be inside the cluster. The distance * is either a number defining pixels or a percentage * defining a percentage of the plot area width. * * @type {number|string} */ distance: 40, /** * When `type` is set to `undefined` and there are more visible points * than the kmeansThreshold the `grid` algorithm is used to find * clusters, otherwise `kmeans`. It ensures good performance on * large datasets and better clusters arrangement after the zoom. */ kmeansThreshold: 100 }, /** * Options for the cluster marker. * @extends plotOptions.series.marker * @excluding enabledThreshold, states * @type {Highcharts.PointMarkerOptionsObject} */ marker: { /** @internal */ symbol: 'cluster', /** @internal */ radius: 15, /** @internal */ lineWidth: 0, /** @internal */ lineColor: palette.backgroundColor }, /** * Fires when the cluster point is clicked and `drillToCluster` is enabled. * One parameter, `event`, is passed to the function. The default action * is to zoom to the cluster points range. This can be prevented * by calling `event.preventDefault()`. * * @type {Highcharts.MarkerClusterDrillCallbackFunction} * @product highcharts highmaps * @see [cluster.drillToCluster](#plotOptions.scatter.marker.cluster.drillToCluster) * @apioption plotOptions.scatter.cluster.events.drillToCluster */ /** * An array defining zones within marker clusters. * * In styled mode, the color zones are styled with the * `.highcharts-cluster-zone-{n}` class, or custom * classed from the `className` * option. * * @sample highcharts/marker-clusters/basic * Marker clusters zones * @sample maps/marker-clusters/custom-alg * Zones on maps * * @type {Array<*>} * @product highcharts highmaps * @apioption plotOptions.scatter.cluster.zones */ /** * Styled mode only. A custom class name for the zone. * * @sample highcharts/css/color-zones/ * Zones styled by class name * * @type {string} * @apioption plotOptions.scatter.cluster.zones.className */ /** * Settings for the cluster marker belonging to the zone. * * @see [cluster.marker](#plotOptions.scatter.cluster.marker) * @extends plotOptions.scatter.cluster.marker * @product highcharts highmaps * @apioption plotOptions.scatter.cluster.zones.marker */ /** * The value where the zone starts. * * @type {number} * @product highcharts highmaps * @apioption plotOptions.scatter.cluster.zones.from */ /** * The value where the zone ends. * * @type {number} * @product highcharts highmaps * @apioption plotOptions.scatter.cluster.zones.to */ /** * The fill color of the cluster marker in hover state. When * `undefined`, the series' or point's fillColor for normal * state is used. * * @type {Highcharts.ColorType} * @apioption plotOptions.scatter.cluster.states.hover.fillColor */ /** * Options for the cluster data labels. * @type {Highcharts.DataLabelsOptions} */ dataLabels: { /** @internal */ enabled: true, /** @internal */ format: '{point.clusterPointsAmount}', /** @internal */ verticalAlign: 'middle', /** @internal */ align: 'center', /** @internal */ style: { color: 'contrast' }, /** @internal */ inside: true } }; (defaultOptions.plotOptions || {}).series = merge((defaultOptions.plotOptions || {}).series, { cluster: clusterDefaultOptions, tooltip: { /** * The HTML of the cluster point's in the tooltip. Works only with * marker-clusters module and analogously to * [pointFormat](#tooltip.pointFormat). * * The cluster tooltip can be also formatted using * `tooltip.formatter` callback function and `point.isCluster` flag. * * @sample highcharts/marker-clusters/grid * Format tooltip for cluster points. * * @sample maps/marker-clusters/europe/ * Format tooltip for clusters using tooltip.formatter * * @apioption tooltip.clusterFormat */ clusterFormat: '<span>Clustered points: ' + '{point.clusterPointsAmount}</span><br/>' } }); // Utils. /* eslint-disable require-jsdoc */ function getClusterPosition(points) { var pointsLen = points.length, sumX = 0, sumY = 0, i; for (i = 0; i < pointsLen; i++) { sumX += points[i].x; sumY += points[i].y; } return { x: sumX / pointsLen, y: sumY / pointsLen }; } // Prepare array with sorted data objects to be // compared in getPointsState method. function getDataState(clusteredData, stateDataLen) { var state = []; state.length = stateDataLen; clusteredData.clusters.forEach(function (cluster) { cluster.data.forEach(function (elem) { state[elem.dataIndex] = elem; }); }); clusteredData.noise.forEach(function (noise) { state[noise.data[0].dataIndex] = noise.data[0]; }); return state; } function fadeInElement(elem, opacity, animation) { elem .attr({ opacity: opacity }) .animate({ opacity: 1 }, animation); } function fadeInStatePoint(stateObj, opacity, animation, fadeinGraphic, fadeinDataLabel) { if (stateObj.point) { if (fadeinGraphic && stateObj.point.graphic) { stateObj.point.graphic.show(); fadeInElement(stateObj.point.graphic, opacity, animation); } if (fadeinDataLabel && stateObj.point.dataLabel) { stateObj.point.dataLabel.show(); fadeInElement(stateObj.point.dataLabel, opacity, animation); } } } function hideStatePoint(stateObj, hideGraphic, hideDataLabel) { if (stateObj.point) { if (hideGraphic && stateObj.point.graphic) { stateObj.point.graphic.hide(); } if (hideDataLabel && stateObj.point.dataLabel) { stateObj.point.dataLabel.hide(); } } } function destroyOldPoints(oldState) { if (oldState) { objectEach(oldState, function (state) { if (state.point && state.point.destroy) { state.point.destroy(); } }); } } function fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, opacity) { // Fade in new point. fadeInStatePoint(newPointObj, opacity, animation, true, true); // Destroy old animated points. oldPoints.forEach(function (p) { if (p.point && p.point.destroy) { p.point.destroy(); } }); } // Generate unique stateId for a state element. function getStateId() { return Math.random().toString(36).substring(2, 7) + '-' + stateIdCounter++; } // Useful for debugging. // function drawGridLines( // series: Highcharts.Series, // options: Highcharts.MarkerClusterLayoutAlgorithmOptions // ): void { // var chart = series.chart, // xAxis = series.xAxis, // yAxis = series.yAxis, // xAxisLen = series.xAxis.len, // yAxisLen = series.yAxis.len, // i, j, elem, text, // currentX = 0, // currentY = 0, // scaledGridSize = 50, // gridX = 0, // gridY = 0, // gridOffset = series.getGridOffset(), // mapXSize, mapYSize; // if (series.debugGridLines && series.debugGridLines.length) { // series.debugGridLines.forEach(function (gridItem): void { // if (gridItem && gridItem.destroy) { // gridItem.destroy(); // } // }); // } // series.debugGridLines = []; // scaledGridSize = series.getScaledGridSize(options); // mapXSize = Math.abs( // xAxis.toPixels(xAxis.dataMax || 0) - // xAxis.toPixels(xAxis.dataMin || 0) // ); // mapYSize = Math.abs( // yAxis.toPixels(yAxis.dataMax || 0) - // yAxis.toPixels(yAxis.dataMin || 0) // ); // gridX = Math.ceil(mapXSize / scaledGridSize); // gridY = Math.ceil(mapYSize / scaledGridSize); // for (i = 0; i < gridX; i++) { // currentX = i * scaledGridSize; // if ( // gridOffset.plotLeft + currentX >= 0 && // gridOffset.plotLeft + currentX < xAxisLen // ) { // for (j = 0; j < gridY; j++) { // currentY = j * scaledGridSize; // if ( // gridOffset.plotTop + currentY >= 0 && // gridOffset.plotTop + currentY < yAxisLen // ) { // if (j % 2 === 0 && i % 2 === 0) { // var rect = chart.renderer // .rect( // gridOffset.plotLeft + currentX, // gridOffset.plotTop + currentY, // scaledGridSize * 2, // scaledGridSize * 2 // ) // .attr({ // stroke: series.color, // 'stroke-width': '2px' // }) // .add() // .toFront(); // series.debugGridLines.push(rect); // } // elem = chart.renderer // .rect( // gridOffset.plotLeft + currentX, // gridOffset.plotTop + currentY, // scaledGridSize, // scaledGridSize // ) // .attr({ // stroke: series.color, // opacity: 0.3, // 'stroke-width': '1px' // }) // .add() // .toFront(); // text = chart.renderer // .text( // j + '-' + i, // gridOffset.plotLeft + currentX + 2, // gridOffset.plotTop + currentY + 7 // ) // .css({ // fill: 'rgba(0, 0, 0, 0.7)', // fontSize: '7px' // }) // .add() // .toFront(); // series.debugGridLines.push(elem); // series.debugGridLines.push(text); // } // } // } // } // } /* eslint-enable require-jsdoc */ // Cluster symbol. SVGRenderer.prototype.symbols.cluster = function (x, y, width, height) { var w = width / 2, h = height / 2, outerWidth = 1, space = 1, inner, outer1, outer2; inner = this.arc(x + w, y + h, w - space * 4, h - space * 4, { start: Math.PI * 0.5, end: Math.PI * 2.5, open: false }); outer1 = this.arc(x + w, y + h, w - space * 3, h - space * 3, { start: Math.PI * 0.5, end: Math.PI * 2.5, innerR: w - outerWidth * 2, open: false }); outer2 = this.arc(x + w, y + h, w - space, h - space, { start: Math.PI * 0.5, end: Math.PI * 2.5, innerR: w, open: false }); return outer2.concat(outer1, inner); }; Scatter.prototype.animateClusterPoint = function (clusterObj) { var series = this, xAxis = series.xAxis, yAxis = series.yAxis, chart = series.chart, clusterOptions = series.options.cluster, animation = animObject((clusterOptions || {}).animation), animDuration = animation.duration || 500, pointsState = (series.markerClusterInfo || {}).pointsState, newState = (pointsState || {}).newState, oldState = (pointsState || {}).oldState, parentId, oldPointObj, newPointObj, oldPoints = [], newPointBBox, offset = 0, newX = 0, newY = 0, isOldPointGrahic = false, isCbHandled = false; if (oldState && newState) { newPointObj = newState[clusterObj.stateId]; newX = xAxis.toPixels(newPointObj.x) - chart.plotLeft; newY = yAxis.toPixels(newPointObj.y) - chart.plotTop; // Point has one ancestor. if (newPointObj.parentsId.length === 1) { parentId = (newState || {})[clusterObj.stateId].parentsId[0]; oldPointObj = oldState[parentId]; // If old and new poistions are the same do not animate. if (newPointObj.point && newPointObj.point.graphic && oldPointObj && oldPointObj.point && oldPointObj.point.plotX && oldPointObj.point.plotY && oldPointObj.point.plotX !== newPointObj.point.plotX && oldPointObj.point.plotY !== newPointObj.point.plotY) { newPointBBox = newPointObj.point.graphic.getBBox(); // Marker image does not have the offset (#14342). offset = newPointObj.point.graphic && newPointObj.point.graphic.isImg ? 0 : newPointBBox.width / 2; newPointObj.point.graphic.attr({ x: oldPointObj.point.plotX - offset, y: oldPointObj.point.plotY - offset }); newPointObj.point.graphic.animate({ x: newX - (newPointObj.point.graphic.radius || 0), y: newY - (newPointObj.point.graphic.radius || 0) }, animation, function () { isCbHandled = true; // Destroy old point. if (oldPointObj.point && oldPointObj.point.destroy) { oldPointObj.point.destroy(); } }); // Data label animation. if (newPointObj.point.dataLabel && newPointObj.point.dataLabel.alignAttr && oldPointObj.point.dataLabel && oldPointObj.point.dataLabel.alignAttr) { newPointObj.point.dataLabel.attr({ x: oldPointObj.point.dataLabel.alignAttr.x, y: oldPointObj.point.dataLabel.alignAttr.y }); newPointObj.point.dataLabel.animate({ x: newPointObj.point.dataLabel.alignAttr.x, y: newPointObj.point.dataLabel.alignAttr.y }, animation); } } } else if (newPointObj.parentsId.length === 0) { // Point has no ancestors - new point. // Hide new point. hideStatePoint(newPointObj, true, true); syncTimeout(function () { // Fade in new point. fadeInStatePoint(newPointObj, 0.1, animation, true, true); }, animDuration / 2); } else { // Point has many ancestors. // Hide new point before animation. hideStatePoint(newPointObj, true, true); newPointObj.parentsId.forEach(function (elem) { if (oldState && oldState[elem]) { oldPointObj = oldState[elem]; oldPoints.push(oldPointObj); if (oldPointObj.point && oldPointObj.point.graphic) { isOldPointGrahic = true; oldPointObj.point.graphic.show(); oldPointObj.point.graphic.animate({ x: newX - (oldPointObj.point.graphic.radius || 0), y: newY - (oldPointObj.point.graphic.radius || 0), opacity: 0.4 }, animation, function () { isCbHandled = true; fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, 0.7); }); if (oldPointObj.point.dataLabel && oldPointObj.point.dataLabel.y !== -9999 && newPointObj.point && newPointObj.point.dataLabel && newPointObj.point.dataLabel.alignAttr) { oldPointObj.point.dataLabel.show(); oldPointObj.point.dataLabel.animate({ x: newPointObj.point.dataLabel.alignAttr.x, y: newPointObj.point.dataLabel.alignAttr.y, opacity: 0.4 }, animation); } } } }); // Make sure point is faded in. syncTimeout(function () { if (!isCbHandled) { fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, 0.85); } }, animDuration); if (!isOldPointGrahic) { syncTimeout(function () { fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, 0.1); }, animDuration / 2); } } } }; Scatter.prototype.getGridOffset = function () { var series = this, chart = series.chart, xAxis = series.xAxis, yAxis = series.yAxis, plotLeft = 0, plotTop = 0; if (series.dataMinX && series.dataMaxX) { plotLeft = xAxis.reversed ? xAxis.toPixels(series.dataMaxX) : xAxis.toPixels(series.dataMinX); } else { plotLeft = chart.plotLeft; } if (series.dataMinY && series.dataMaxY) { plotTop = yAxis.reversed ? yAxis.toPixels(series.dataMinY) : yAxis.toPixels(series.dataMaxY); } else { plotTop = chart.plotTop; } return { plotLeft: plotLeft, plotTop: plotTop }; }; Scatter.prototype.getScaledGridSize = function (options) { var series = this, xAxis = series.xAxis, search = true, k = 1, divider = 1, processedGridSize = options.processedGridSize || clusterDefaultOptions.layoutAlgorithm.gridSize, gridSize, scale, level; if (!series.gridValueSize) { series.gridValueSize = Math.abs(xAxis.toValue(processedGridSize) - xAxis.toValue(0)); } gridSize = xAxis.toPixels(series.gridValueSize) - xAxis.toPixels(0); scale = +(processedGridSize / gridSize).toFixed(14); // Find the level and its divider. while (search && scale !== 1) { level = Math.pow(2, k); if (scale > 0.75 && scale < 1.25) { search = false; } else if (scale >= (1 / level) && scale < 2 * (1 / level)) { search = false; divider = level; } else if (scale <= level && scale > level / 2) { search = false; divider = 1 / level; } k++; } return (processedGridSize / divider) / scale; }; Scatter.prototype.getRealExtremes = function () { var _a, _b; var series = this, chart = series.chart, xAxis = series.xAxis, yAxis = series.yAxis, realMinX = xAxis ? xAxis.toValue(chart.plotLeft) : 0, realMaxX = xAxis ? xAxis.toValue(chart.plotLeft + chart.plotWidth) : 0, realMinY = yAxis ? yAxis.toValue(chart.plotTop) : 0, realMaxY = yAxis ? yAxis.toValue(chart.plotTop + chart.plotHeight) : 0; if (realMinX > realMaxX) { _a = [realMinX, realMaxX], realMaxX = _a[0], realMinX = _a[1]; } if (realMinY > realMaxY) { _b = [realMinY, realMaxY], realMaxY = _b[0], realMinY = _b[1]; } return { minX: realMinX, maxX: realMaxX, minY: realMinY, maxY: realMaxY }; }; Scatter.prototype.onDrillToCluster = function (event) { var point = event.point || event.target; point.firePointEvent('drillToCluster', event, function (e) { var _a, _b; var point = e.point || e.target, series = point.series, xAxis = point.series.xAxis, yAxis = point.series.yAxis, chart = point.series.chart, clusterOptions = series.options.cluster, drillToCluster = (clusterOptions || {}).drillToCluster, offsetX, offsetY, sortedDataX, sortedDataY, minX, minY, maxX, maxY; if (drillToCluster && point.clusteredData) { sortedDataX = point.clusteredData.map(function (data) { return data.x; }).sort(function (a, b) { return a - b; }); sortedDataY = point.clusteredData.map(function (data) { return data.y; }).sort(function (a, b) { return a - b; }); minX = sortedDataX[0]; maxX = sortedDataX[sortedDataX.length - 1]; minY = sortedDataY[0]; maxY = sortedDataY[sortedDataY.length - 1]; offsetX = Math.abs((maxX - minX) * 0.1); offsetY = Math.abs((maxY - minY) * 0.1); chart.pointer.zoomX = true; chart.pointer.zoomY = true; // Swap when minus values. if (minX > maxX) { _a = [maxX, minX], minX = _a[0], maxX = _a[1]; } if (minY > maxY) { _b = [maxY, minY], minY = _b[0], maxY = _b[1]; } chart.zoom({ originalEvent: e, xAxis: [{ axis: xAxis, min: minX - offsetX, max: maxX + offsetX }], yAxis: [{ axis: yAxis, min: minY - offsetY, max: maxY + offsetY }] }); } }); }; Scatter.prototype.getClusterDistancesFromPoint = function (clusters, pointX, pointY) { var series = this, xAxis = series.xAxis, yAxis = series.yAxis, pointClusterDistance = [], j, distance; for (j = 0; j < clusters.length; j++) { distance = Math.sqrt(Math.pow(xAxis.toPixels(pointX) - xAxis.toPixels(clusters[j].posX), 2) + Math.pow(yAxis.toPixels(pointY) - yAxis.toPixels(clusters[j].posY), 2)); pointClusterDistance.push({ clusterIndex: j, distance: distance }); } return pointClusterDistance.sort(function (a, b) { return a.distance - b.distance; }); }; // Point state used when animation is enabled to compare // and bind old points with new ones. Scatter.prototype.getPointsState = function (clusteredData, oldMarkerClusterInfo, dataLength) { var oldDataStateArr = oldMarkerClusterInfo ? getDataState(oldMarkerClusterInfo, dataLength) : [], newDataStateArr = getDataState(clusteredData, dataLength), state = {}, newState, oldState, i; // Clear global array before populate with new ids. oldPointsStateId = []; // Build points state structure. clusteredData.clusters.forEach(function (cluster) { state[cluster.stateId] = { x: cluster.x, y: cluster.y, id: cluster.stateId, point: cluster.point, parentsId: [] }; }); clusteredData.noise.forEach(function (noise) { state[noise.stateId] = { x: noise.x, y: noise.y, id: noise.stateId, point: noise.point, parentsId: [] }; }); // Bind new and old state. for (i = 0; i < newDataStateArr.length; i++) { newState = newDataStateArr[i]; oldState = oldDataStateArr[i]; if (newState && oldState && newState.parentStateId && oldState.parentStateId && state[newState.parentStateId] && state[newState.parentStateId].parentsId.indexOf(oldState.parentStateId) === -1) { state[newState.parentStateId].parentsId.push(oldState.parentStateId); if (oldPointsStateId.indexOf(oldState.parentStateId) === -1) { oldPointsStateId.push(oldState.parentStateId); } } } return state; }; Scatter.prototype.markerClusterAlgorithms = { grid: function (dataX, dataY, dataIndexes, options) { var series = this, xAxis = series.xAxis, yAxis = series.yAxis, grid = {}, gridOffset = series.getGridOffset(), scaledGridSize, x, y, gridX, gridY, key, i; // drawGridLines(series, options); scaledGridSize = series.getScaledGridSize(options); for (i = 0; i < dataX.length; i++) { x = xAxis.toPixels(dataX[i]) - gridOffset.plotLeft; y = yAxis.toPixels(dataY[i]) - gridOffset.plotTop; gridX = Math.floor(x / scaledGridSize); gridY = Math.floor(y / scaledGridSize); key = gridY + '-' + gridX; if (!grid[key]) { grid[key] = []; } grid[key].push({ dataIndex: dataIndexes[i], x: dataX[i], y: dataY[i] }); } return grid; }, kmeans: function (dataX, dataY, dataIndexes, options) { var series = this, clusters = [], noise = [], group = {}, pointMaxDistance = options.processedDistance || clusterDefaultOptions.layoutAlgorithm.distance, iterations = options.iterations, // Max pixel difference beetwen new and old cluster position. maxClusterShift = 1, currentIteration = 0, repeat = true, pointX = 0, pointY = 0, tempPos, pointClusterDistance = [], groupedData, key, i, j; options.processedGridSize = options.processedDistance; // Use grid method to get groupedData object. groupedData = series.markerClusterAlgorithms ? series.markerClusterAlgorithms.grid.call(series, dataX, dataY, dataIndexes, options) : {}; // Find clusters amount and its start positions // based on grid grouped data. for (key in groupedData) { if (groupedData[key].length > 1) { tempPos = getClusterPosition(groupedData[key]); clusters.push({ posX: tempPos.x, posY: tempPos.y, oldX: 0, oldY: 0, startPointsLen: groupedData[key].length, points: [] }); } } // Start kmeans iteration process. while (repeat) { clusters.map(function (c) { c.points.length = 0; return c; }); noise.length = 0; for (i = 0; i < dataX.length; i++) { pointX = dataX[i]; pointY = dataY[i]; pointClusterDistance = series.getClusterDistancesFromPoint(clusters, pointX, pointY); if (pointClusterDistance.length && pointClusterDistance[0].distance < pointMaxDistance) { clusters[pointClusterDistance[0].clusterIndex].points.push({ x: pointX, y: pointY, dataIndex: dataIndexes[i] }); } else { noise.push({ x: pointX, y: pointY, dataIndex: dataIndexes[i] }); } } // When cluster points array has only one point the // point should be classified again. for (j = 0; j < clusters.length; j++) { if (clusters[j].points.length === 1) { pointClusterDistance = series.getClusterDistancesFromPoint(clusters, clusters[j].points[0].x, clusters[j].points[0].y); if (pointClusterDistance[1].distance < pointMaxDistance) { // Add point to the next closest cluster. clusters[pointClusterDistance[1].clusterIndex].points .push(clusters[j].points[0]); // Clear points array. clusters[pointClusterDistance[0].clusterIndex] .points.length = 0; } } } // Compute a new clusters position and check if it // is different than the old one. repeat = false; for (j = 0; j < clusters.length; j++) { tempPos = getClusterPosition(clusters[j].points); clusters[j].oldX = clusters[j].posX; clusters[j].oldY = clusters[j].posY; clusters[j].posX = tempPos.x; clusters[j].posY = tempPos.y; // Repeat the algorithm if at least one cluster // is shifted more than maxClusterShift property. if (clusters[j].posX > clusters[j].oldX + maxClusterShift || clusters[j].posX < clusters[j].oldX - maxClusterShift || clusters[j].posY > clusters[j].oldY + maxClusterShift || clusters[j].posY < clusters[j].oldY - maxClusterShift) { repeat = true; } } // If iterations property is set repeat the algorithm // specified amount of times. if (iterations) { repeat = currentIteration < iterations - 1; } currentIteration++; } clusters.forEach(function (cluster, i) { group['cluster' + i] = cluster.points; }); noise.forEach(function (noise, i) { group['noise' + i] = [noise]; }); return group; }, optimizedKmeans: function (processedXData, processedYData, dataIndexes, options) { var series = this, xAxis = series.xAxis, yAxis = series.yAxis, pointMaxDistance = options.processedDistance || clusterDefaultOptions.layoutAlgorithm.gridSize, group = {}, extremes = series.getRealExtremes(), clusterMarkerOptions = (series.options.cluster || {}).marker, offset, distance, radius; if (!series.markerClusterInfo || (series.initMaxX && series.initMaxX < extremes.maxX || series.initMinX && series.initMinX > extremes.minX || series.initMaxY && series.initMaxY < extremes.maxY || series.initMinY && series.initMinY > extremes.minY)) { series.initMaxX = extremes.maxX; series.initMinX = extremes.minX; series.initMaxY = extremes.maxY; series.initMinY = extremes.minY; group = series.markerClusterAlgorithms ? series.markerClusterAlgorithms.kmeans.call(series, processedXData, processedYData, dataIndexes, options) : {}; series.baseClusters = null; } else { if (!series.baseClusters) { series.baseClusters = { clusters: series.markerClusterInfo.clusters, noise: series.markerClusterInfo.noise }; } series.baseClusters.clusters.forEach(function (cluster) { cluster.pointsOutside = []; cluster.pointsInside = []; cluster.data.forEach(function (dataPoint) { distance = Math.sqrt(Math.pow(xAxis.toPixels(dataPoint.x) - xAxis.toPixels(cluster.x), 2) + Math.pow(yAxis.toPixels(dataPoint.y) - yAxis.toPixels(cluster.y), 2)); if (cluster.clusterZone && cluster.clusterZone.marker && cluster.clusterZone.marker.radius) { radius = cluster.clusterZone.marker.radius; } else if (clusterMarkerOptions && clusterMarkerOptions.radius) { radius = clusterMarkerOptions.radius; } else { radius = clusterDefaultOptions.marker.radius; } offset = pointMaxDistance - radius >= 0 ? pointMaxDistance - radius : radius; if (distance > radius + offset && defined(cluster.pointsOutside)) { cluster.pointsOutside.push(dataPoint); } else if (defined(cluster.pointsInside)) { cluster.pointsInside.push(dataPoint); } }); if (cluster.pointsInside.length) { group[cluster.id] = cluster.pointsInside; } cluster.pointsOutside.forEach(function (p, i) { group[cluster.id + '_noise' + i] = [p]; }); }); series.baseClusters.noise.forEach(function (noise) { group[noise.id] = noise.data; }); } return group; } }; Scatter.prototype.preventClusterCollisions = function (props) { var series = this, xAxis = series.xAxis, yAxis = series.yAxis, _a = props.key.split('-').map(parseFloat), gridY = _a[0], gridX = _a[1], gridSize = props.gridSize, groupedData = props.groupedData, defaultRadius = props.defaultRadius, clusterRadius = props.clusterRadius, gridXPx = gridX * gridSize, gridYPx = gridY * gridSize, xPixel = xAxis.toPixels(props.x), yPixel = yAxis.toPixels(props.y), gridsToCheckCollision = [], pointsLen = 0, radius = 0, clusterMarkerOptions = (series.options.cluster || {}).marker, zoneOptions = (series.options.cluster || {}).zones, gridOffset = series.getGridOffset(), nextXPixel, nextYPixel, signX, signY, cornerGridX, cornerGridY, i, j, itemX, itemY, nextClusterPos, maxDist, keys, x, y; // Distance to the grid start. xPixel -= gridOffset.plotLeft; yPixel -= gridOffset.plotTop; for (i = 1; i < 5; i++) { signX = i % 2 ? -1 : 1; signY = i < 3 ? -1 : 1; cornerGridX = Math.floor((xPixel + signX * clusterRadius) / gridSize); cornerGridY = Math.floor((yPixel + signY * clusterRadius) / gridSize); keys = [ cornerGridY + '-' + cornerGridX, cornerGridY + '-' + gridX, gridY + '-' + cornerGridX ]; for (j = 0; j < keys.length; j++) { if (gridsToCheckCollision.indexOf(keys[j]) === -1 && keys[j] !== props.key) { gridsToCheckCollision.push(keys[j]); } } } gridsToCheckCollision.forEach(function (item) { var _a; if (groupedData[item]) { // Cluster or noise position is already computed. if (!groupedData[item].posX) { nextClusterPos = getClusterPosition(groupedData[item]); groupedData[item].posX = nextClusterPos.x; groupedData[item].posY = nextClusterPos.y; } nextXPixel = xAxis.toPixels(groupedData[item].posX || 0) - gridOffset.plotLeft; nextYPixel = yAxis.toPixels(groupedData[item].posY || 0) - gridOffset.plotTop; _a = item.split('-').map(parseFloat), itemY = _a[0], itemX = _a[1]; if (zoneOptions) { pointsLen = groupedData[item].length; for (i = 0; i < zoneOptions.length; i++) { if (pointsLen >= zoneOptions[i].from && pointsLen <= zoneOptions[i].to) { if (defined((zoneOptions[i].marker || {}).radius)) { radius = zoneOptions[i].marker.radius || 0; } else if (clusterMarkerOptions && clusterMarkerOptions.radius) { radius = clusterMarkerOptions.radius; } else { radius = clusterDefaultOptions.marker.radius; } } } } if (groupedData[item].length > 1 && radius === 0 && clusterMarkerOptions && clusterMarkerOptions.radius) { radius = clusterMarkerOptions.radius; } else if (groupedData[item].length === 1) { radius = defaultRadius; } maxDist = clusterRadius + radius; radius = 0; if (itemX !== gridX && Math.abs(xPixel - nextXPixel) < maxDist) { xPixel = itemX - gridX < 0 ? gridXPx + clusterRadius : gridXPx + gridSize - clusterRadius; } if (itemY !== gridY && Math.abs(yPixel - nextYPixel) < maxDist) { yPixel = itemY - gridY < 0 ? gridYPx + clusterRadius : gridYPx + gridSize - clusterRadius; } } }); x = xAxis.toValue(xPixel + gridOffset.plotLeft); y = yAxis.toValue(yPixel + gridOffset.plotTop); groupedData[props.key].posX = x; groupedData[props.key].posY = y; return { x: x, y: y }; }; // Check if user algorithm result is valid groupedDataObject. Scatter.prototype.isValidGroupedDataObject = function (groupedData) { var result = false, i; if (!isObject(groupedData)) { return false; } objectEach(groupedData, function (elem) { result = true; if (!isArray(elem) || !elem.length) { result = false; return; } for (i = 0; i < elem.length; i++) { if (!isObject(elem[i]) || (!elem[i].x || !elem[i].y)) { result = false; return; } } }); return result; }; Scatter.prototype.getClusteredData = function (groupedData, options) { var series = this, groupedXData = [], groupedYData = [], clusters = [], // Container for clusters. noise = [], // Container for points not belonging to any cluster. groupMap = [], index = 0, // Prevent minimumClusterSize lower than 2. minimumClusterSize = Math.max(2, options.minimumClusterSize || 2), stateId, point, points, pointUserOptions, pointsLen, marker, clusterPos, pointOptions, clusterTempPos, zoneOptions, clusterZone, clusterZoneClassName, i, k; // Check if groupedData is valid when user uses a custom algorithm. if (isFunction(options.layoutAlgorithm.type) && !series.isValidGroupedDataObject(groupedData)) { error('Highcharts marker-clusters module: ' + 'The custom algorithm result is not valid!', false, series.chart); return false; } for (k in groupedData) { if (groupedData[k].length >= minimumClusterSize) { points = groupedData[k]; stateId = getStateId(); pointsLen = points.length; // Get zone options for cluster. if (options.zones) { for (i = 0; i < options.zones.length; i++) { if (pointsLen >= options.zones[i].from && pointsLen <= options.zones[i].to) { clusterZone = options.zones[i]; clusterZone.zoneIndex = i; zoneOptions = options.zones[i].marker; clusterZoneClassName = options.zones[i].className; } } } clusterTempPos = getClusterPosition(points); if (options.layoutAlgorithm.type === 'grid' && !options.allowOverlap) { marker = series.options.marker || {}; clusterPos = series.preventClusterCollisions({ x: clusterTempPos.x, y: clusterTempPos.y, key: k, groupedData: groupedData, gridSize: series.getScaledGridSize(options.layoutAlgorithm), defaultRadius: marker.radius || 3 + (marker.lineWidth || 0), clusterRadius: (zoneOptions && zoneOptions.radius) ? zoneOptions.radius : (options.marker || {}).radius || clusterDefaultOptions.marker.radius }); } else { clusterPos = { x: clusterTempPos.x, y: clusterTempPos.y }; } for (i = 0; i < pointsLen; i++) { points[i].parentStateId = stateId; } clusters.push({ x: clusterPos.x, y: clusterPos.y, id: k, stateId: stateId, index: index, data: points, clusterZone: clusterZone, clusterZoneClassName: clusterZoneClassName }); groupedXData.push(clusterPos.x); gro