highcharts
Version:
JavaScript charting framework
1,337 lines (1,184 loc) • 140 kB
JavaScript
/**
* @license Highcharts JS v5.0.13 (2017-07-27)
*
* 3D features for Highcharts JS
*
* @license: www.highcharts.com/license
*/
'use strict';
(function(factory) {
if (typeof module === 'object' && module.exports) {
module.exports = factory;
} else {
factory(Highcharts);
}
}(function(Highcharts) {
(function(H) {
/**
* (c) 2010-2017 Torstein Honsi
*
* License: www.highcharts.com/license
*/
/**
* Mathematical Functionility
*/
var deg2rad = H.deg2rad,
pick = H.pick;
/**
* Apply 3-D rotation
* Euler Angles (XYZ): cosA = cos(Alfa|Roll), cosB = cos(Beta|Pitch), cosG = cos(Gamma|Yaw)
*
* Composite rotation:
* | cosB * cosG | cosB * sinG | -sinB |
* | sinA * sinB * cosG - cosA * sinG | sinA * sinB * sinG + cosA * cosG | sinA * cosB |
* | cosA * sinB * cosG + sinA * sinG | cosA * sinB * sinG - sinA * cosG | cosA * cosB |
*
* Now, Gamma/Yaw is not used (angle=0), so we assume cosG = 1 and sinG = 0, so we get:
* | cosB | 0 | - sinB |
* | sinA * sinB | cosA | sinA * cosB |
* | cosA * sinB | - sinA | cosA * cosB |
*
* But in browsers, y is reversed, so we get sinA => -sinA. The general result is:
* | cosB | 0 | - sinB | | x | | px |
* | - sinA * sinB | cosA | - sinA * cosB | x | y | = | py |
* | cosA * sinB | sinA | cosA * cosB | | z | | pz |
*/
function rotate3D(x, y, z, angles) {
return {
x: angles.cosB * x - angles.sinB * z,
y: -angles.sinA * angles.sinB * x + angles.cosA * y - angles.cosB * angles.sinA * z,
z: angles.cosA * angles.sinB * x + angles.sinA * y + angles.cosA * angles.cosB * z
};
}
function perspective3D(coordinate, origin, distance) {
var projection = ((distance > 0) && (distance < Number.POSITIVE_INFINITY)) ? distance / (coordinate.z + origin.z + distance) : 1;
return {
x: coordinate.x * projection,
y: coordinate.y * projection
};
}
/**
* Transforms a given array of points according to the angles in chart.options.
* Parameters:
* - points: the array of points
* - chart: the chart
* - insidePlotArea: wether to verifiy the points are inside the plotArea
* Returns:
* - an array of transformed points
*/
H.perspective = function(points, chart, insidePlotArea) {
var options3d = chart.options.chart.options3d,
inverted = insidePlotArea ? chart.inverted : false,
origin = {
x: chart.plotWidth / 2,
y: chart.plotHeight / 2,
z: options3d.depth / 2,
vd: pick(options3d.depth, 1) * pick(options3d.viewDistance, 0)
},
scale = chart.scale3d || 1,
beta = deg2rad * options3d.beta * (inverted ? -1 : 1),
alpha = deg2rad * options3d.alpha * (inverted ? -1 : 1),
angles = {
cosA: Math.cos(alpha),
cosB: Math.cos(-beta),
sinA: Math.sin(alpha),
sinB: Math.sin(-beta)
};
if (!insidePlotArea) {
origin.x += chart.plotLeft;
origin.y += chart.plotTop;
}
// Transform each point
return H.map(points, function(point) {
var rotated = rotate3D(
(inverted ? point.y : point.x) - origin.x,
(inverted ? point.x : point.y) - origin.y,
(point.z || 0) - origin.z,
angles
),
coordinate = perspective3D(rotated, origin, origin.vd); // Apply perspective
// Apply translation
coordinate.x = coordinate.x * scale + origin.x;
coordinate.y = coordinate.y * scale + origin.y;
coordinate.z = rotated.z * scale + origin.z;
return {
x: (inverted ? coordinate.y : coordinate.x),
y: (inverted ? coordinate.x : coordinate.y),
z: coordinate.z
};
});
};
/**
* Calculate a distance from camera to points - made for calculating zIndex of scatter points.
* Parameters:
* - coordinates: The coordinates of the specific point
* - chart: the chart
* Returns:
* - a distance from camera to point
*/
H.pointCameraDistance = function(coordinates, chart) {
var options3d = chart.options.chart.options3d,
cameraPosition = {
x: chart.plotWidth / 2,
y: chart.plotHeight / 2,
z: pick(options3d.depth, 1) * pick(options3d.viewDistance, 0) + options3d.depth
},
distance = Math.sqrt(Math.pow(cameraPosition.x - coordinates.plotX, 2) + Math.pow(cameraPosition.y - coordinates.plotY, 2) + Math.pow(cameraPosition.z - coordinates.plotZ, 2));
return distance;
};
/**
* Calculate area of a 2D polygon using Shoelace algorithm
* http://en.wikipedia.org/wiki/Shoelace_formula
*/
H.shapeArea = function(vertexes) {
var area = 0,
i,
j;
for (i = 0; i < vertexes.length; i++) {
j = (i + 1) % vertexes.length;
area += vertexes[i].x * vertexes[j].y - vertexes[j].x * vertexes[i].y;
}
return area / 2;
};
/**
* Calculate area of a 3D polygon after perspective projection
*/
H.shapeArea3d = function(vertexes, chart, insidePlotArea) {
return H.shapeArea(H.perspective(vertexes, chart, insidePlotArea));
};
}(Highcharts));
(function(H) {
/**
* (c) 2010-2017 Torstein Honsi
*
* License: www.highcharts.com/license
*/
var cos = Math.cos,
PI = Math.PI,
sin = Math.sin;
var animObject = H.animObject,
charts = H.charts,
color = H.color,
defined = H.defined,
deg2rad = H.deg2rad,
each = H.each,
extend = H.extend,
inArray = H.inArray,
map = H.map,
merge = H.merge,
perspective = H.perspective,
pick = H.pick,
SVGElement = H.SVGElement,
SVGRenderer = H.SVGRenderer,
wrap = H.wrap;
/***
EXTENSION TO THE SVG-RENDERER TO ENABLE 3D SHAPES
***/
////// HELPER METHODS //////
var dFactor = (4 * (Math.sqrt(2) - 1) / 3) / (PI / 2);
/** Method to construct a curved path
* Can 'wrap' around more then 180 degrees
*/
function curveTo(cx, cy, rx, ry, start, end, dx, dy) {
var result = [],
arcAngle = end - start;
if ((end > start) && (end - start > Math.PI / 2 + 0.0001)) {
result = result.concat(curveTo(cx, cy, rx, ry, start, start + (Math.PI / 2), dx, dy));
result = result.concat(curveTo(cx, cy, rx, ry, start + (Math.PI / 2), end, dx, dy));
return result;
}
if ((end < start) && (start - end > Math.PI / 2 + 0.0001)) {
result = result.concat(curveTo(cx, cy, rx, ry, start, start - (Math.PI / 2), dx, dy));
result = result.concat(curveTo(cx, cy, rx, ry, start - (Math.PI / 2), end, dx, dy));
return result;
}
return [
'C',
cx + (rx * Math.cos(start)) - ((rx * dFactor * arcAngle) * Math.sin(start)) + dx,
cy + (ry * Math.sin(start)) + ((ry * dFactor * arcAngle) * Math.cos(start)) + dy,
cx + (rx * Math.cos(end)) + ((rx * dFactor * arcAngle) * Math.sin(end)) + dx,
cy + (ry * Math.sin(end)) - ((ry * dFactor * arcAngle) * Math.cos(end)) + dy,
cx + (rx * Math.cos(end)) + dx,
cy + (ry * Math.sin(end)) + dy
];
}
/**
* Override the SVGRenderer initiator to add definitions used by brighter and
* darker faces of the cuboids.
*/
wrap(SVGRenderer.prototype, 'init', function(proceed) {
proceed.apply(this, [].slice.call(arguments, 1));
each([{
name: 'darker',
slope: 0.6
}, {
name: 'brighter',
slope: 1.4
}], function(cfg) {
this.definition({
tagName: 'filter',
id: 'highcharts-' + cfg.name,
children: [{
tagName: 'feComponentTransfer',
children: [{
tagName: 'feFuncR',
type: 'linear',
slope: cfg.slope
}, {
tagName: 'feFuncG',
type: 'linear',
slope: cfg.slope
}, {
tagName: 'feFuncB',
type: 'linear',
slope: cfg.slope
}]
}]
});
}, this);
});
SVGRenderer.prototype.toLinePath = function(points, closed) {
var result = [];
// Put "L x y" for each point
each(points, function(point) {
result.push('L', point.x, point.y);
});
if (points.length) {
// Set the first element to M
result[0] = 'M';
// If it is a closed line, add Z
if (closed) {
result.push('Z');
}
}
return result;
};
SVGRenderer.prototype.toLineSegments = function(points) {
var result = [];
var m = true;
each(points, function(point) {
result.push(m ? 'M' : 'L', point.x, point.y);
m = !m;
});
return result;
};
/**
* A 3-D Face is defined by it's 3D vertexes, and is only
* visible if it's vertexes are counter-clockwise (Back-face culling).
* It is used as a polyhedron Element
*/
SVGRenderer.prototype.face3d = function(args) {
var renderer = this,
ret = this.createElement('path');
ret.vertexes = [];
ret.insidePlotArea = false;
ret.enabled = true;
wrap(ret, 'attr', function(proceed, hash) {
if (typeof hash === 'object' &&
(defined(hash.enabled) || defined(hash.vertexes) || defined(hash.insidePlotArea))) {
this.enabled = pick(hash.enabled, this.enabled);
this.vertexes = pick(hash.vertexes, this.vertexes);
this.insidePlotArea = pick(hash.insidePlotArea, this.insidePlotArea);
delete hash.enabled;
delete hash.vertexes;
delete hash.insidePlotArea;
var chart = charts[renderer.chartIndex],
vertexes2d = perspective(this.vertexes, chart, this.insidePlotArea),
path = renderer.toLinePath(vertexes2d, true),
area = H.shapeArea(vertexes2d),
visibility = (this.enabled && area > 0) ? 'visible' : 'hidden';
hash.d = path;
hash.visibility = visibility;
}
return proceed.apply(this, [].slice.call(arguments, 1));
});
wrap(ret, 'animate', function(proceed, params) {
if (typeof params === 'object' &&
(defined(params.enabled) || defined(params.vertexes) || defined(params.insidePlotArea))) {
this.enabled = pick(params.enabled, this.enabled);
this.vertexes = pick(params.vertexes, this.vertexes);
this.insidePlotArea = pick(params.insidePlotArea, this.insidePlotArea);
delete params.enabled;
delete params.vertexes;
delete params.insidePlotArea;
var chart = charts[renderer.chartIndex],
vertexes2d = perspective(this.vertexes, chart, this.insidePlotArea),
path = renderer.toLinePath(vertexes2d, true),
area = H.shapeArea(vertexes2d),
visibility = (this.enabled && area > 0) ? 'visible' : 'hidden';
params.d = path;
this.attr('visibility', visibility);
}
return proceed.apply(this, [].slice.call(arguments, 1));
});
return ret.attr(args);
};
/**
* A Polyhedron is a handy way of defining a group of 3-D faces.
* It's only attribute is `faces`, an array of attributes of each one of it's Face3D instances.
*/
SVGRenderer.prototype.polyhedron = function(args) {
var renderer = this,
result = this.g(),
destroy = result.destroy;
result.faces = [];
// destroy all children
result.destroy = function() {
for (var i = 0; i < result.faces.length; i++) {
result.faces[i].destroy();
}
return destroy.call(this);
};
wrap(result, 'attr', function(proceed, hash, val, complete, continueAnimation) {
if (typeof hash === 'object' && defined(hash.faces)) {
while (result.faces.length > hash.faces.length) {
result.faces.pop().destroy();
}
while (result.faces.length < hash.faces.length) {
result.faces.push(renderer.face3d().add(result));
}
for (var i = 0; i < hash.faces.length; i++) {
result.faces[i].attr(hash.faces[i], null, complete, continueAnimation);
}
delete hash.faces;
}
return proceed.apply(this, [].slice.call(arguments, 1));
});
wrap(result, 'animate', function(proceed, params, duration, complete) {
if (params && params.faces) {
while (result.faces.length > params.faces.length) {
result.faces.pop().destroy();
}
while (result.faces.length < params.faces.length) {
result.faces.push(renderer.face3d().add(result));
}
for (var i = 0; i < params.faces.length; i++) {
result.faces[i].animate(params.faces[i], duration, complete);
}
delete params.faces;
}
return proceed.apply(this, [].slice.call(arguments, 1));
});
return result.attr(args);
};
////// CUBOIDS //////
SVGRenderer.prototype.cuboid = function(shapeArgs) {
var result = this.g(),
destroy = result.destroy,
paths = this.cuboidPath(shapeArgs);
// create the 3 sides
result.front = this.path(paths[0]).attr({
'class': 'highcharts-3d-front'
}).add(result); // Front, top and side are never overlapping in our case so it is redundant to set zIndex of every element.
result.top = this.path(paths[1]).attr({
'class': 'highcharts-3d-top'
}).add(result);
result.side = this.path(paths[2]).attr({
'class': 'highcharts-3d-side'
}).add(result);
// apply the fill everywhere, the top a bit brighter, the side a bit darker
result.fillSetter = function(fill) {
this.front.attr({
fill: fill
});
this.top.attr({
fill: color(fill).brighten(0.1).get()
});
this.side.attr({
fill: color(fill).brighten(-0.1).get()
});
this.color = fill;
// for animation getter (#6776)
result.fill = fill;
return this;
};
// apply opacaity everywhere
result.opacitySetter = function(opacity) {
this.front.attr({
opacity: opacity
});
this.top.attr({
opacity: opacity
});
this.side.attr({
opacity: opacity
});
return this;
};
result.attr = function(args, val, complete, continueAnimation) {
// Resolve setting attributes by string name
if (typeof args === 'string' && typeof val !== 'undefined') {
var key = args;
args = {};
args[key] = val;
}
if (args.shapeArgs || defined(args.x)) {
var shapeArgs = args.shapeArgs || args;
var paths = this.renderer.cuboidPath(shapeArgs);
this.front.attr({
d: paths[0]
});
this.top.attr({
d: paths[1]
});
this.side.attr({
d: paths[2]
});
} else {
// getter returns value
return SVGElement.prototype.attr.call(
this, args, undefined, complete, continueAnimation
);
}
return this;
};
result.animate = function(args, duration, complete) {
if (defined(args.x) && defined(args.y)) {
var paths = this.renderer.cuboidPath(args);
this.front.animate({
d: paths[0]
}, duration, complete);
this.top.animate({
d: paths[1]
}, duration, complete);
this.side.animate({
d: paths[2]
}, duration, complete);
this.attr({
zIndex: -paths[3] // #4774
});
} else if (args.opacity) {
this.front.animate(args, duration, complete);
this.top.animate(args, duration, complete);
this.side.animate(args, duration, complete);
} else {
SVGElement.prototype.animate.call(this, args, duration, complete);
}
return this;
};
// destroy all children
result.destroy = function() {
this.front.destroy();
this.top.destroy();
this.side.destroy();
return destroy.call(this);
};
// Apply the Z index to the cuboid group
result.attr({
zIndex: -paths[3]
});
return result;
};
/**
* Generates a cuboid
*/
H.SVGRenderer.prototype.cuboidPath = function(shapeArgs) {
var x = shapeArgs.x,
y = shapeArgs.y,
z = shapeArgs.z,
h = shapeArgs.height,
w = shapeArgs.width,
d = shapeArgs.depth,
chart = charts[this.chartIndex],
front,
back,
top,
bottom,
left,
right,
shape,
path1,
path2,
path3,
isFront,
isTop,
isRight,
options3d = chart.options.chart.options3d,
alpha = options3d.alpha,
// Priority for x axis is the biggest,
// because of x direction has biggest influence on zIndex
incrementX = 10000,
// y axis has the smallest priority in case of our charts
// (needs to be set because of stacking)
incrementY = 10,
incrementZ = 100,
zIndex = 0;
// The 8 corners of the cube
var pArr = [{
x: x,
y: y,
z: z
}, {
x: x + w,
y: y,
z: z
}, {
x: x + w,
y: y + h,
z: z
}, {
x: x,
y: y + h,
z: z
}, {
x: x,
y: y + h,
z: z + d
}, {
x: x + w,
y: y + h,
z: z + d
}, {
x: x + w,
y: y,
z: z + d
}, {
x: x,
y: y,
z: z + d
}];
// apply perspective
pArr = perspective(pArr, chart, shapeArgs.insidePlotArea);
// helper method to decide which side is visible
function mapPath(i) {
return pArr[i];
}
/*
* First value - path with specific side
* Second value - added information about side for later calculations.
* Possible second values are 0 for path1, 1 for path2 and -1 for no path choosed.
*/
var pickShape = function(path1, path2) {
var ret = [
[], -1
];
path1 = map(path1, mapPath);
path2 = map(path2, mapPath);
if (H.shapeArea(path1) < 0) {
ret = [path1, 0];
} else if (H.shapeArea(path2) < 0) {
ret = [path2, 1];
}
return ret;
};
// front or back
front = [3, 2, 1, 0];
back = [7, 6, 5, 4];
shape = pickShape(front, back);
path1 = shape[0];
isFront = shape[1];
// top or bottom
top = [1, 6, 7, 0];
bottom = [4, 5, 2, 3];
shape = pickShape(top, bottom);
path2 = shape[0];
isTop = shape[1];
// side
right = [1, 2, 5, 6];
left = [0, 7, 4, 3];
shape = pickShape(right, left);
path3 = shape[0];
isRight = shape[1];
/*
* New block used for calculating zIndex. It is basing on X, Y and Z position of specific columns.
* All zIndexes (for X, Y and Z values) are added to the final zIndex, where every value has different priority.
* The biggest priority is in X and Z directions, the lowest index is for stacked columns (Y direction and the same X and Z positions).
* Big differents between priorities is made because we need to ensure that even for big changes in Y and Z parameters
* all columns will be drawn correctly.
*/
if (isRight === 1) {
zIndex += incrementX * (1000 - x);
} else if (!isRight) {
zIndex += incrementX * x;
}
zIndex += incrementY * (!isTop ||
(alpha >= 0 && alpha <= 180 || alpha < 360 && alpha > 357.5) ? // Numbers checked empirically
chart.plotHeight - y : 10 + y
);
if (isFront === 1) {
zIndex += incrementZ * (z);
} else if (!isFront) {
zIndex += incrementZ * (1000 - z);
}
zIndex = -Math.round(zIndex);
return [
this.toLinePath(path1, true),
this.toLinePath(path2, true),
this.toLinePath(path3, true),
zIndex
]; // #4774
};
////// SECTORS //////
H.SVGRenderer.prototype.arc3d = function(attribs) {
var wrapper = this.g(),
renderer = wrapper.renderer,
customAttribs = ['x', 'y', 'r', 'innerR', 'start', 'end'];
/**
* Get custom attributes. Don't mutate the original object and return an object with only custom attr.
*/
function suckOutCustom(params) {
var hasCA = false,
ca = {};
params = merge(params); // Don't mutate the original object
for (var key in params) {
if (inArray(key, customAttribs) !== -1) {
ca[key] = params[key];
delete params[key];
hasCA = true;
}
}
return hasCA ? ca : false;
}
attribs = merge(attribs);
attribs.alpha *= deg2rad;
attribs.beta *= deg2rad;
// Create the different sub sections of the shape
wrapper.top = renderer.path();
wrapper.side1 = renderer.path();
wrapper.side2 = renderer.path();
wrapper.inn = renderer.path();
wrapper.out = renderer.path();
/**
* Add all faces
*/
wrapper.onAdd = function() {
var parent = wrapper.parentGroup,
className = wrapper.attr('class');
wrapper.top.add(wrapper);
// These faces are added outside the wrapper group because the z index
// relates to neighbour elements as well
each(['out', 'inn', 'side1', 'side2'], function(face) {
wrapper[face]
.attr({
'class': className + ' highcharts-3d-side'
})
.add(parent);
});
};
// Cascade to faces
each(['addClass', 'removeClass'], function(fn) {
wrapper[fn] = function() {
var args = arguments;
each(['top', 'out', 'inn', 'side1', 'side2'], function(face) {
wrapper[face][fn].apply(wrapper[face], args);
});
};
});
/**
* Compute the transformed paths and set them to the composite shapes
*/
wrapper.setPaths = function(attribs) {
var paths = wrapper.renderer.arc3dPath(attribs),
zIndex = paths.zTop * 100;
wrapper.attribs = attribs;
wrapper.top.attr({
d: paths.top,
zIndex: paths.zTop
});
wrapper.inn.attr({
d: paths.inn,
zIndex: paths.zInn
});
wrapper.out.attr({
d: paths.out,
zIndex: paths.zOut
});
wrapper.side1.attr({
d: paths.side1,
zIndex: paths.zSide1
});
wrapper.side2.attr({
d: paths.side2,
zIndex: paths.zSide2
});
// show all children
wrapper.zIndex = zIndex;
wrapper.attr({
zIndex: zIndex
});
// Set the radial gradient center the first time
if (attribs.center) {
wrapper.top.setRadialReference(attribs.center);
delete attribs.center;
}
};
wrapper.setPaths(attribs);
// Apply the fill to the top and a darker shade to the sides
wrapper.fillSetter = function(value) {
var darker = color(value).brighten(-0.1).get();
this.fill = value;
this.side1.attr({
fill: darker
});
this.side2.attr({
fill: darker
});
this.inn.attr({
fill: darker
});
this.out.attr({
fill: darker
});
this.top.attr({
fill: value
});
return this;
};
// Apply the same value to all. These properties cascade down to the children
// when set to the composite arc3d.
each(['opacity', 'translateX', 'translateY', 'visibility'], function(setter) {
wrapper[setter + 'Setter'] = function(value, key) {
wrapper[key] = value;
each(['out', 'inn', 'side1', 'side2', 'top'], function(el) {
wrapper[el].attr(key, value);
});
};
});
/**
* Override attr to remove shape attributes and use those to set child paths
*/
wrap(wrapper, 'attr', function(proceed, params) {
var ca;
if (typeof params === 'object') {
ca = suckOutCustom(params);
if (ca) {
extend(wrapper.attribs, ca);
wrapper.setPaths(wrapper.attribs);
}
}
return proceed.apply(this, [].slice.call(arguments, 1));
});
/**
* Override the animate function by sucking out custom parameters related to the shapes directly,
* and update the shapes from the animation step.
*/
wrap(wrapper, 'animate', function(proceed, params, animation, complete) {
var ca,
from = this.attribs,
to,
anim;
// Attribute-line properties connected to 3D. These shouldn't have been in the
// attribs collection in the first place.
delete params.center;
delete params.z;
delete params.depth;
delete params.alpha;
delete params.beta;
anim = animObject(pick(animation, this.renderer.globalAnimation));
if (anim.duration) {
ca = suckOutCustom(params);
params.dummy = 1; // Params need to have a property in order for the step to run (#5765)
if (ca) {
to = ca;
anim.step = function(a, fx) {
function interpolate(key) {
return from[key] + (pick(to[key], from[key]) - from[key]) * fx.pos;
}
if (fx.prop === 'dummy') {
fx.elem.setPaths(merge(from, {
x: interpolate('x'),
y: interpolate('y'),
r: interpolate('r'),
innerR: interpolate('innerR'),
start: interpolate('start'),
end: interpolate('end')
}));
}
};
}
animation = anim; // Only when duration (#5572)
}
return proceed.call(this, params, animation, complete);
});
// destroy all children
wrapper.destroy = function() {
this.top.destroy();
this.out.destroy();
this.inn.destroy();
this.side1.destroy();
this.side2.destroy();
SVGElement.prototype.destroy.call(this);
};
// hide all children
wrapper.hide = function() {
this.top.hide();
this.out.hide();
this.inn.hide();
this.side1.hide();
this.side2.hide();
};
wrapper.show = function() {
this.top.show();
this.out.show();
this.inn.show();
this.side1.show();
this.side2.show();
};
return wrapper;
};
/**
* Generate the paths required to draw a 3D arc
*/
SVGRenderer.prototype.arc3dPath = function(shapeArgs) {
var cx = shapeArgs.x, // x coordinate of the center
cy = shapeArgs.y, // y coordinate of the center
start = shapeArgs.start, // start angle
end = shapeArgs.end - 0.00001, // end angle
r = shapeArgs.r, // radius
ir = shapeArgs.innerR, // inner radius
d = shapeArgs.depth, // depth
alpha = shapeArgs.alpha, // alpha rotation of the chart
beta = shapeArgs.beta; // beta rotation of the chart
// Derived Variables
var cs = Math.cos(start), // cosinus of the start angle
ss = Math.sin(start), // sinus of the start angle
ce = Math.cos(end), // cosinus of the end angle
se = Math.sin(end), // sinus of the end angle
rx = r * Math.cos(beta), // x-radius
ry = r * Math.cos(alpha), // y-radius
irx = ir * Math.cos(beta), // x-radius (inner)
iry = ir * Math.cos(alpha), // y-radius (inner)
dx = d * Math.sin(beta), // distance between top and bottom in x
dy = d * Math.sin(alpha); // distance between top and bottom in y
// TOP
var top = ['M', cx + (rx * cs), cy + (ry * ss)];
top = top.concat(curveTo(cx, cy, rx, ry, start, end, 0, 0));
top = top.concat([
'L', cx + (irx * ce), cy + (iry * se)
]);
top = top.concat(curveTo(cx, cy, irx, iry, end, start, 0, 0));
top = top.concat(['Z']);
// OUTSIDE
var b = (beta > 0 ? Math.PI / 2 : 0),
a = (alpha > 0 ? 0 : Math.PI / 2);
var start2 = start > -b ? start : (end > -b ? -b : start),
end2 = end < PI - a ? end : (start < PI - a ? PI - a : end),
midEnd = 2 * PI - a;
// When slice goes over bottom middle, need to add both, left and right outer side.
// Additionally, when we cross right hand edge, create sharp edge. Outer shape/wall:
//
// -------
// / ^ \
// 4) / / \ \ 1)
// / / \ \
// / / \ \
// (c)=> ==== ==== <=(d)
// \ \ / /
// \ \<=(a)/ /
// \ \ / / <=(b)
// 3) \ v / 2)
// -------
//
// (a) - inner side
// (b) - outer side
// (c) - left edge (sharp)
// (d) - right edge (sharp)
// 1..n - rendering order for startAngle = 0, when set to e.g 90, order changes clockwise (1->2, 2->3, n->1) and counterclockwise for negative startAngle
var out = ['M', cx + (rx * cos(start2)), cy + (ry * sin(start2))];
out = out.concat(curveTo(cx, cy, rx, ry, start2, end2, 0, 0));
if (end > midEnd && start < midEnd) { // When shape is wide, it can cross both, (c) and (d) edges, when using startAngle
// Go to outer side
out = out.concat([
'L', cx + (rx * cos(end2)) + dx, cy + (ry * sin(end2)) + dy
]);
// Curve to the right edge of the slice (d)
out = out.concat(curveTo(cx, cy, rx, ry, end2, midEnd, dx, dy));
// Go to the inner side
out = out.concat([
'L', cx + (rx * cos(midEnd)), cy + (ry * sin(midEnd))
]);
// Curve to the true end of the slice
out = out.concat(curveTo(cx, cy, rx, ry, midEnd, end, 0, 0));
// Go to the outer side
out = out.concat([
'L', cx + (rx * cos(end)) + dx, cy + (ry * sin(end)) + dy
]);
// Go back to middle (d)
out = out.concat(curveTo(cx, cy, rx, ry, end, midEnd, dx, dy));
out = out.concat([
'L', cx + (rx * cos(midEnd)), cy + (ry * sin(midEnd))
]);
// Go back to the left edge
out = out.concat(curveTo(cx, cy, rx, ry, midEnd, end2, 0, 0));
} else if (end > PI - a && start < PI - a) { // But shape can cross also only (c) edge:
// Go to outer side
out = out.concat([
'L', cx + (rx * Math.cos(end2)) + dx, cy + (ry * Math.sin(end2)) + dy
]);
// Curve to the true end of the slice
out = out.concat(curveTo(cx, cy, rx, ry, end2, end, dx, dy));
// Go to the inner side
out = out.concat([
'L', cx + (rx * Math.cos(end)), cy + (ry * Math.sin(end))
]);
// Go back to the artifical end2
out = out.concat(curveTo(cx, cy, rx, ry, end, end2, 0, 0));
}
out = out.concat([
'L', cx + (rx * Math.cos(end2)) + dx, cy + (ry * Math.sin(end2)) + dy
]);
out = out.concat(curveTo(cx, cy, rx, ry, end2, start2, dx, dy));
out = out.concat(['Z']);
// INSIDE
var inn = ['M', cx + (irx * cs), cy + (iry * ss)];
inn = inn.concat(curveTo(cx, cy, irx, iry, start, end, 0, 0));
inn = inn.concat([
'L', cx + (irx * Math.cos(end)) + dx, cy + (iry * Math.sin(end)) + dy
]);
inn = inn.concat(curveTo(cx, cy, irx, iry, end, start, dx, dy));
inn = inn.concat(['Z']);
// SIDES
var side1 = [
'M', cx + (rx * cs), cy + (ry * ss),
'L', cx + (rx * cs) + dx, cy + (ry * ss) + dy,
'L', cx + (irx * cs) + dx, cy + (iry * ss) + dy,
'L', cx + (irx * cs), cy + (iry * ss),
'Z'
];
var side2 = [
'M', cx + (rx * ce), cy + (ry * se),
'L', cx + (rx * ce) + dx, cy + (ry * se) + dy,
'L', cx + (irx * ce) + dx, cy + (iry * se) + dy,
'L', cx + (irx * ce), cy + (iry * se),
'Z'
];
// correction for changed position of vanishing point caused by alpha and beta rotations
var angleCorr = Math.atan2(dy, -dx),
angleEnd = Math.abs(end + angleCorr),
angleStart = Math.abs(start + angleCorr),
angleMid = Math.abs((start + end) / 2 + angleCorr);
// set to 0-PI range
function toZeroPIRange(angle) {
angle = angle % (2 * Math.PI);
if (angle > Math.PI) {
angle = 2 * Math.PI - angle;
}
return angle;
}
angleEnd = toZeroPIRange(angleEnd);
angleStart = toZeroPIRange(angleStart);
angleMid = toZeroPIRange(angleMid);
// *1e5 is to compensate pInt in zIndexSetter
var incPrecision = 1e5,
a1 = angleMid * incPrecision,
a2 = angleStart * incPrecision,
a3 = angleEnd * incPrecision;
return {
top: top,
zTop: Math.PI * incPrecision + 1, // max angle is PI, so this is allways higher
out: out,
zOut: Math.max(a1, a2, a3),
inn: inn,
zInn: Math.max(a1, a2, a3),
side1: side1,
zSide1: a3 * 0.99, // to keep below zOut and zInn in case of same values
side2: side2,
zSide2: a2 * 0.99
};
};
}(Highcharts));
(function(H) {
/**
* (c) 2010-2017 Torstein Honsi
*
* License: www.highcharts.com/license
*/
var Chart = H.Chart,
each = H.each,
merge = H.merge,
perspective = H.perspective,
pick = H.pick,
wrap = H.wrap;
/***
EXTENSION FOR 3D CHARTS
***/
// Shorthand to check the is3d flag
Chart.prototype.is3d = function() {
return this.options.chart.options3d && this.options.chart.options3d.enabled; // #4280
};
Chart.prototype.propsRequireDirtyBox.push('chart.options3d');
Chart.prototype.propsRequireUpdateSeries.push('chart.options3d');
/**
* Calculate scale of the 3D view. That is required to
* fit chart's 3D projection into the actual plotting area. Reported as #4933.
* @notice This function should ideally take the plot values instead of a chart object,
* but since the chart object is needed for perspective it is not practical.
* Possible to make both getScale and perspective more logical and also immutable.
* @param {Object} chart Chart object
* @param {Number} chart.plotLeft
* @param {Number} chart.plotWidth
* @param {Number} chart.plotTop
* @param {Number} chart.plotHeight
* @param {Number} depth The depth of the chart
* @return {Number} The scale to fit the 3D chart into the plotting area.
*/
function getScale(chart, depth) {
var plotLeft = chart.plotLeft,
plotRight = chart.plotWidth + plotLeft,
plotTop = chart.plotTop,
plotBottom = chart.plotHeight + plotTop,
originX = plotLeft + chart.plotWidth / 2,
originY = plotTop + chart.plotHeight / 2,
bbox3d = {
minX: Number.MAX_VALUE,
maxX: -Number.MAX_VALUE,
minY: Number.MAX_VALUE,
maxY: -Number.MAX_VALUE
},
corners,
scale = 1;
// Top left corners:
corners = [{
x: plotLeft,
y: plotTop,
z: 0
}, {
x: plotLeft,
y: plotTop,
z: depth
}];
// Top right corners:
each([0, 1], function(i) {
corners.push({
x: plotRight,
y: corners[i].y,
z: corners[i].z
});
});
// All bottom corners:
each([0, 1, 2, 3], function(i) {
corners.push({
x: corners[i].x,
y: plotBottom,
z: corners[i].z
});
});
// Calculate 3D corners:
corners = perspective(corners, chart, false);
// Get bounding box of 3D element:
each(corners, function(corner) {
bbox3d.minX = Math.min(bbox3d.minX, corner.x);
bbox3d.maxX = Math.max(bbox3d.maxX, corner.x);
bbox3d.minY = Math.min(bbox3d.minY, corner.y);
bbox3d.maxY = Math.max(bbox3d.maxY, corner.y);
});
// Left edge:
if (plotLeft > bbox3d.minX) {
scale = Math.min(scale, 1 - Math.abs((plotLeft + originX) / (bbox3d.minX + originX)) % 1);
}
// Right edge:
if (plotRight < bbox3d.maxX) {
scale = Math.min(scale, (plotRight - originX) / (bbox3d.maxX - originX));
}
// Top edge:
if (plotTop > bbox3d.minY) {
if (bbox3d.minY < 0) {
scale = Math.min(scale, (plotTop + originY) / (-bbox3d.minY + plotTop + originY));
} else {
scale = Math.min(scale, 1 - (plotTop + originY) / (bbox3d.minY + originY) % 1);
}
}
// Bottom edge:
if (plotBottom < bbox3d.maxY) {
scale = Math.min(scale, Math.abs((plotBottom - originY) / (bbox3d.maxY - originY)));
}
return scale;
}
H.wrap(H.Chart.prototype, 'isInsidePlot', function(proceed) {
return this.is3d() || proceed.apply(this, [].slice.call(arguments, 1));
});
var defaultOptions = H.getOptions();
/**
* Options to render charts in 3 dimensions.
* This feature requires highcharts-3d.js, found in the download package,
* or online at code.highcharts.com/highcharts-3d.js.
* @optionparent
*/
var extendedOptions = {
/**
* Options regarding the chart area and plot area as well as general
* chart options.
*
* @product highcharts highstock highmaps
*/
chart: {
/**
* Options to render charts in 3 dimensions. This feature requires
* `highcharts-3d.js`, found in the download package or online at
* [code.highcharts.com/highcharts-3d.js](http://code.highcharts.com/highcharts-
* 3d.js).
*
* @since 4.0
* @product highcharts
*/
options3d: {
/**
* Wether to render the chart using the 3D functionality.
*
* @type {Boolean}
* @default false
* @since 4.0
* @product highcharts
*/
enabled: false,
/**
* One of the two rotation angles for the chart.
*
* @type {Number}
* @default 0
* @since 4.0
* @product highcharts
*/
alpha: 0,
/**
* One of the two rotation angles for the chart.
*
* @type {Number}
* @default 0
* @since 4.0
* @product highcharts
*/
beta: 0,
/**
* The total depth of the chart.
*
* @type {Number}
* @default 100
* @since 4.0
* @product highcharts
*/
depth: 100,
/**
* Whether the 3d box should automatically adjust to the chart plot
* area.
*
* @type {Boolean}
* @default true
* @since 4.2.4
* @product highcharts
*/
fitToPlot: true,
/**
* Defines the distance the viewer is standing in front of the chart,
* this setting is important to calculate the perspective effect
* in column and scatter charts. It is not used for 3D pie charts.
*
* @type {Number}
* @default 100
* @since 4.0
* @product highcharts
*/
viewDistance: 25,
/**
* Set it to `"auto"` to automatically move the labels to the best
* edge.
*
* @validvalue [null, "auto"]
* @type {String}
* @default null
* @since 5.0.12
* @product highcharts
*/
axisLabelPosition: 'default',
/**
* Provides th