UNPKG

highcharts

Version:
1,096 lines (1,095 loc) 45.1 kB
/* * * * Marker clusters module. * * (c) 2010-2025 Torstein Honsi * * Author: Wojciech Chmiel * * License: www.highcharts.com/license * * !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!! * * */ 'use strict'; import A from '../../Core/Animation/AnimationUtilities.js'; const { animObject } = A; import DataTableCore from '../../Data/DataTableCore.js'; import MarkerClusterDefaults from './MarkerClusterDefaults.js'; const { cluster: clusterDefaults } = MarkerClusterDefaults; import U from '../../Core/Utilities.js'; const { addEvent, defined, error, isArray, isFunction, isObject, isNumber, merge, objectEach, relativeLength, syncTimeout } = U; /* * * * Constants * * */ const markerClusterAlgorithms = { grid: function (dataX, dataY, dataIndexes, options) { const series = this, grid = {}, gridOffset = series.getGridOffset(), scaledGridSize = series.getScaledGridSize(options); let x, y, gridX, gridY, key, i; for (i = 0; i < dataX.length; i++) { const p = valuesToPixels(series, { x: dataX[i], y: dataY[i] }); x = p.x - gridOffset.plotLeft; y = p.y - gridOffset.plotTop; gridX = Math.floor(x / scaledGridSize); gridY = Math.floor(y / scaledGridSize); key = gridY + ':' + gridX; grid[key] ?? (grid[key] = []); grid[key].push({ dataIndex: dataIndexes[i], x: dataX[i], y: dataY[i] }); } return grid; }, kmeans: function (dataX, dataY, dataIndexes, options) { const series = this, clusters = [], noise = [], group = {}, pointMaxDistance = options.processedDistance || clusterDefaults.layoutAlgorithm.distance, iterations = options.iterations, // Max pixel difference beetwen new and old cluster position. maxClusterShift = 1; let currentIteration = 0, repeat = true, pointX = 0, pointY = 0, tempPos, pointClusterDistance = []; options.processedGridSize = options.processedDistance; // Use grid method to get groupedData object. const groupedData = series.markerClusterAlgorithms ? series.markerClusterAlgorithms.grid.call(series, dataX, dataY, dataIndexes, options) : {}; // Find clusters amount and its start positions // based on grid grouped data. for (const key in groupedData) { if (groupedData[key].length > 1) { tempPos = getClusterPosition(groupedData[key]); clusters.push({ posX: tempPos.x, posY: tempPos.y, oldX: 0, oldY: 0, startPointsLen: groupedData[key].length, points: [] }); } } // Start kmeans iteration process. while (repeat) { for (const c of clusters) { c.points.length = 0; } noise.length = 0; for (let i = 0; i < dataX.length; i++) { pointX = dataX[i]; pointY = dataY[i]; pointClusterDistance = series.getClusterDistancesFromPoint(clusters, pointX, pointY); if (pointClusterDistance.length && pointClusterDistance[0].distance < pointMaxDistance) { clusters[pointClusterDistance[0].clusterIndex].points.push({ x: pointX, y: pointY, dataIndex: dataIndexes[i] }); } else { noise.push({ x: pointX, y: pointY, dataIndex: dataIndexes[i] }); } } // When cluster points array has only one point the // point should be classified again. for (let i = 0; i < clusters.length; i++) { if (clusters[i].points.length === 1) { pointClusterDistance = series.getClusterDistancesFromPoint(clusters, clusters[i].points[0].x, clusters[i].points[0].y); if (pointClusterDistance[1].distance < pointMaxDistance) { // Add point to the next closest cluster. clusters[pointClusterDistance[1].clusterIndex].points .push(clusters[i].points[0]); // Clear points array. clusters[pointClusterDistance[0].clusterIndex] .points.length = 0; } } } // Compute a new clusters position and check if it // is different than the old one. repeat = false; for (let i = 0; i < clusters.length; i++) { tempPos = getClusterPosition(clusters[i].points); clusters[i].oldX = clusters[i].posX; clusters[i].oldY = clusters[i].posY; clusters[i].posX = tempPos.x; clusters[i].posY = tempPos.y; // Repeat the algorithm if at least one cluster // is shifted more than maxClusterShift property. if (clusters[i].posX > clusters[i].oldX + maxClusterShift || clusters[i].posX < clusters[i].oldX - maxClusterShift || clusters[i].posY > clusters[i].oldY + maxClusterShift || clusters[i].posY < clusters[i].oldY - maxClusterShift) { repeat = true; } } // If iterations property is set repeat the algorithm // specified amount of times. if (iterations) { repeat = currentIteration < iterations - 1; } currentIteration++; } for (let i = 0, iEnd = clusters.length; i < iEnd; ++i) { group['cluster' + i] = clusters[i].points; } for (let i = 0, iEnd = noise.length; i < iEnd; ++i) { group['noise' + i] = [noise[i]]; } return group; }, optimizedKmeans: function (processedXData, processedYData, dataIndexes, options) { const series = this, pointMaxDistance = options.processedDistance || clusterDefaults.layoutAlgorithm.gridSize, extremes = series.getRealExtremes(), clusterMarkerOptions = (series.options.cluster || {}).marker; let distance, group = {}, offset, radius; if (!series.markerClusterInfo || (series.initMaxX && series.initMaxX < extremes.maxX || series.initMinX && series.initMinX > extremes.minX || series.initMaxY && series.initMaxY < extremes.maxY || series.initMinY && series.initMinY > extremes.minY)) { series.initMaxX = extremes.maxX; series.initMinX = extremes.minX; series.initMaxY = extremes.maxY; series.initMinY = extremes.minY; group = series.markerClusterAlgorithms ? series.markerClusterAlgorithms.kmeans.call(series, processedXData, processedYData, dataIndexes, options) : {}; series.baseClusters = null; } else { series.baseClusters ?? (series.baseClusters = { clusters: series.markerClusterInfo.clusters, noise: series.markerClusterInfo.noise }); for (const cluster of series.baseClusters.clusters) { cluster.pointsOutside = []; cluster.pointsInside = []; for (const dataPoint of cluster.data) { const dataPointPx = valuesToPixels(series, dataPoint), clusterPx = valuesToPixels(series, cluster); distance = Math.sqrt(Math.pow(dataPointPx.x - clusterPx.x, 2) + Math.pow(dataPointPx.y - clusterPx.y, 2)); if (cluster.clusterZone?.marker?.radius) { radius = cluster.clusterZone.marker.radius; } else if (clusterMarkerOptions?.radius) { radius = clusterMarkerOptions.radius; } else { radius = clusterDefaults.marker.radius; } offset = pointMaxDistance - radius >= 0 ? pointMaxDistance - radius : radius; if (distance > radius + offset && defined(cluster.pointsOutside)) { cluster.pointsOutside.push(dataPoint); } else if (defined(cluster.pointsInside)) { cluster.pointsInside.push(dataPoint); } } if (cluster.pointsInside.length) { group[cluster.id] = cluster.pointsInside; } let i = 0; for (const p of cluster.pointsOutside) { group[cluster.id + '_noise' + i++] = [p]; } } for (const noise of series.baseClusters.noise) { group[noise.id] = noise.data; } } return group; } }; /* * * * Variables * * */ let baseGeneratePoints, /** * Points that ids are included in the oldPointsStateId array are hidden * before animation. Other ones are destroyed. * @private */ oldPointsStateId = [], stateIdCounter = 0; /* * * * Functions * * */ /** @private */ function compose(highchartsDefaultOptions, ScatterSeriesClass) { const scatterProto = ScatterSeriesClass.prototype; if (!scatterProto.markerClusterAlgorithms) { baseGeneratePoints = scatterProto.generatePoints; scatterProto.markerClusterAlgorithms = markerClusterAlgorithms; scatterProto.animateClusterPoint = seriesAnimateClusterPoint; scatterProto.destroyClusteredData = seriesDestroyClusteredData; scatterProto.generatePoints = seriesGeneratePoints; scatterProto.getClusterDistancesFromPoint = seriesGetClusterDistancesFromPoint; scatterProto.getClusteredData = seriesGetClusteredData; scatterProto.getGridOffset = seriesGetGridOffset; scatterProto.getPointsState = seriesGetPointsState; scatterProto.getRealExtremes = seriesGetRealExtremes; scatterProto.getScaledGridSize = seriesGetScaledGridSize; scatterProto.hideClusteredData = seriesHideClusteredData; scatterProto.isValidGroupedDataObject = seriesIsValidGroupedDataObject; scatterProto.preventClusterCollisions = seriesPreventClusterCollisions; // Destroy grouped data on series destroy. addEvent(ScatterSeriesClass, 'destroy', scatterProto.destroyClusteredData); if (highchartsDefaultOptions.plotOptions) { highchartsDefaultOptions.plotOptions.series = merge(highchartsDefaultOptions.plotOptions.series, MarkerClusterDefaults); } } } /** * Util function. * @private */ function destroyOldPoints(oldState) { for (const key of Object.keys(oldState)) { oldState[key].point?.destroy?.(); } } /** * Util function. * @private */ function fadeInElement(elem, opacity, animation) { elem.attr({ opacity }).animate({ opacity: 1 }, animation); } /** * Util function. * @private */ function fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, opacity) { // Fade in new point. fadeInStatePoint(newPointObj, opacity, animation, true, true); // Destroy old animated points. for (const p of oldPoints) { p.point?.destroy?.(); } } /** * Util function. * @private */ function fadeInStatePoint(stateObj, opacity, animation, fadeinGraphic, fadeinDataLabel) { if (stateObj.point) { if (fadeinGraphic && stateObj.point.graphic) { stateObj.point.graphic.show(); fadeInElement(stateObj.point.graphic, opacity, animation); } if (fadeinDataLabel && stateObj.point.dataLabel) { stateObj.point.dataLabel.show(); fadeInElement(stateObj.point.dataLabel, opacity, animation); } } } /** * Util function. * @private */ function getClusterPosition(points) { const pointsLen = points.length; let sumX = 0, sumY = 0; for (let i = 0; i < pointsLen; i++) { sumX += points[i].x; sumY += points[i].y; } return { x: sumX / pointsLen, y: sumY / pointsLen }; } /** * Util function.Prepare array with sorted data objects to be compared in * getPointsState method. * @private */ function getDataState(clusteredData, stateDataLen) { const state = []; state.length = stateDataLen; clusteredData.clusters.forEach(function (cluster) { cluster.data.forEach(function (elem) { state[elem.dataIndex] = elem; }); }); clusteredData.noise.forEach(function (noise) { state[noise.data[0].dataIndex] = noise.data[0]; }); return state; } /** * Util function. Generate unique stateId for a state element. * @private */ function getStateId() { return Math.random().toString(36).substring(2, 7) + '-' + stateIdCounter++; } /** * Util function. * @private */ function hideStatePoint(stateObj, hideGraphic, hideDataLabel) { if (stateObj.point) { if (hideGraphic && stateObj.point.graphic) { stateObj.point.graphic.hide(); } if (hideDataLabel && stateObj.point.dataLabel) { stateObj.point.dataLabel.hide(); } } } /** @private */ function onPointDrillToCluster(event) { const point = event.point || event.target; point.firePointEvent('drillToCluster', event, function (e) { const point = e.point || e.target, series = point.series, { xAxis, yAxis, chart } = series, { inverted, mapView, pointer } = chart, drillToCluster = series.options.cluster?.drillToCluster; if (drillToCluster && point.clusteredData) { const sortedDataX = point.clusteredData .map((data) => data.x) .sort((a, b) => a - b), sortedDataY = point.clusteredData .map((data) => data.y) .sort((a, b) => a - b), minX = sortedDataX[0], maxX = sortedDataX[sortedDataX.length - 1], minY = sortedDataY[0], maxY = sortedDataY[sortedDataY.length - 1], offsetX = Math.abs((maxX - minX) * 0.1), offsetY = Math.abs((maxY - minY) * 0.1), x1 = Math.min(minX, maxX) - offsetX, x2 = Math.max(minX, maxX) + offsetX, y1 = Math.min(minY, maxY) - offsetY, y2 = Math.max(minY, maxY) + offsetY; if (mapView) { mapView.fitToBounds({ x1, x2, y1, y2 }); } else if (xAxis && yAxis) { let x1Px = xAxis.toPixels(x1), x2Px = xAxis.toPixels(x2), y1Px = yAxis.toPixels(y1), y2Px = yAxis.toPixels(y2); if (inverted) { [x1Px, x2Px, y1Px, y2Px] = [y1Px, y2Px, x1Px, x2Px]; } if (x1Px > x2Px) { [x1Px, x2Px] = [x2Px, x1Px]; } if (y1Px > y2Px) { [y1Px, y2Px] = [y2Px, y1Px]; } if (pointer) { pointer.zoomX = true; pointer.zoomY = true; } chart.transform({ from: { x: x1Px, y: y1Px, width: x2Px - x1Px, height: y2Px - y1Px } }); } } }); } /** * Util function. * @private */ function pixelsToValues(series, pos) { const { chart, xAxis, yAxis } = series; if (chart.mapView) { return chart.mapView.pixelsToProjectedUnits(pos); } return { x: xAxis ? xAxis.toValue(pos.x) : 0, y: yAxis ? yAxis.toValue(pos.y) : 0 }; } /** @private */ function seriesAnimateClusterPoint(clusterObj) { const series = this, chart = series.chart, mapView = chart.mapView, animation = animObject(series.options.cluster?.animation), animDuration = animation.duration || 500, pointsState = series.markerClusterInfo?.pointsState, newState = pointsState?.newState, oldState = pointsState?.oldState, oldPoints = []; let parentId, oldPointObj, newPointObj, newPointBBox, offset = 0, newX = 0, newY = 0, isOldPointGrahic = false, isCbHandled = false; if (oldState && newState) { newPointObj = newState[clusterObj.stateId]; const newPos = valuesToPixels(series, newPointObj); newX = newPos.x - (mapView ? 0 : chart.plotLeft); newY = newPos.y - (mapView ? 0 : chart.plotTop); // Point has one ancestor. if (newPointObj.parentsId.length === 1) { parentId = newState?.[clusterObj.stateId].parentsId[0]; oldPointObj = oldState[parentId]; // If old and new positions are the same do not animate. if (newPointObj.point?.graphic && oldPointObj.point?.plotX && oldPointObj.point.plotY && (oldPointObj.point.plotX !== newPointObj.point.plotX || oldPointObj.point.plotY !== newPointObj.point.plotY)) { newPointBBox = newPointObj.point.graphic.getBBox(); // Marker image does not have the offset (#14342). offset = newPointObj.point.graphic?.isImg ? 0 : newPointBBox.width / 2; newPointObj.point.graphic.attr({ x: oldPointObj.point.plotX - offset, y: oldPointObj.point.plotY - offset }); newPointObj.point.graphic.animate({ x: newX - (newPointObj.point.graphic.radius || 0), y: newY - (newPointObj.point.graphic.radius || 0) }, animation, function () { isCbHandled = true; // Destroy old point. oldPointObj.point?.destroy?.(); }); // Data label animation. if (newPointObj.point.dataLabel?.alignAttr && oldPointObj.point.dataLabel?.alignAttr) { newPointObj.point.dataLabel.attr({ x: oldPointObj.point.dataLabel.alignAttr.x, y: oldPointObj.point.dataLabel.alignAttr.y }); newPointObj.point.dataLabel.animate({ x: newPointObj.point.dataLabel.alignAttr.x, y: newPointObj.point.dataLabel.alignAttr.y }, animation); } } } else if (newPointObj.parentsId.length === 0) { // Point has no ancestors - new point. // Hide new point. hideStatePoint(newPointObj, true, true); syncTimeout(function () { // Fade in new point. fadeInStatePoint(newPointObj, 0.1, animation, true, true); }, animDuration / 2); } else { // Point has many ancestors. // Hide new point before animation. hideStatePoint(newPointObj, true, true); newPointObj.parentsId.forEach(function (elem) { if (oldState?.[elem]) { oldPointObj = oldState[elem]; oldPoints.push(oldPointObj); if (oldPointObj.point?.graphic) { isOldPointGrahic = true; oldPointObj.point.graphic.show(); oldPointObj.point.graphic.animate({ x: newX - (oldPointObj.point.graphic.radius || 0), y: newY - (oldPointObj.point.graphic.radius || 0), opacity: 0.4 }, animation, function () { isCbHandled = true; fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, 0.7); }); if (oldPointObj.point.dataLabel && oldPointObj.point.dataLabel.y !== -9999 && newPointObj.point?.dataLabel?.alignAttr) { oldPointObj.point.dataLabel.show(); oldPointObj.point.dataLabel.animate({ x: newPointObj.point.dataLabel.alignAttr.x, y: newPointObj.point.dataLabel.alignAttr.y, opacity: 0.4 }, animation); } } } }); // Make sure point is faded in. syncTimeout(function () { if (!isCbHandled) { fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, 0.85); } }, animDuration); if (!isOldPointGrahic) { syncTimeout(function () { fadeInNewPointAndDestoryOld(newPointObj, oldPoints, animation, 0.1); }, animDuration / 2); } } } } /** * Destroy clustered data points. * @private */ function seriesDestroyClusteredData() { // Clear previous groups. this.markerClusterSeriesData?.forEach((point) => { point?.destroy?.(); }); this.markerClusterSeriesData = null; } /** * Override the generatePoints method by adding a reference to grouped data. * @private */ function seriesGeneratePoints() { const series = this, { chart } = series, mapView = chart.mapView, xData = series.getColumn('x'), yData = series.getColumn('y'), clusterOptions = series.options.cluster, realExtremes = series.getRealExtremes(), visibleXData = [], visibleYData = [], visibleDataIndexes = []; let oldPointsState, oldDataLen, oldMarkerClusterInfo, kmeansThreshold, cropDataOffsetX, cropDataOffsetY, seriesMinX, seriesMaxX, seriesMinY, seriesMaxY, type, algorithm, clusteredData, groupedData, layoutAlgOptions, point; // For map point series, we need to resolve lon, lat and geometry options // and project them on the plane in order to get x and y. In the regular // series flow, this is not done until the `translate` method because the // resulting [x, y] position depends on inset positions in the MapView. if (mapView && series.is('mappoint') && xData && yData) { series.options.data?.forEach((p, i) => { const xy = series.projectPoint(p); if (xy) { xData[i] = xy.x; yData[i] = xy.y; } }); } if (clusterOptions?.enabled && xData?.length && yData?.length && !chart.polar) { type = clusterOptions.layoutAlgorithm.type; layoutAlgOptions = clusterOptions.layoutAlgorithm; // Get processed algorithm properties. layoutAlgOptions.processedGridSize = relativeLength(layoutAlgOptions.gridSize || clusterDefaults.layoutAlgorithm.gridSize, chart.plotWidth); layoutAlgOptions.processedDistance = relativeLength(layoutAlgOptions.distance || clusterDefaults.layoutAlgorithm.distance, chart.plotWidth); kmeansThreshold = layoutAlgOptions.kmeansThreshold || clusterDefaults.layoutAlgorithm.kmeansThreshold; // Offset to prevent cluster size changes. const halfGrid = layoutAlgOptions.processedGridSize / 2, p1 = pixelsToValues(series, { x: 0, y: 0 }), p2 = pixelsToValues(series, { x: halfGrid, y: halfGrid }); cropDataOffsetX = Math.abs(p1.x - p2.x); cropDataOffsetY = Math.abs(p1.y - p2.y); // Get only visible data. for (let i = 0; i < xData.length; i++) { if (!series.dataMaxX) { if (!defined(seriesMaxX) || !defined(seriesMinX) || !defined(seriesMaxY) || !defined(seriesMinY)) { seriesMaxX = seriesMinX = xData[i]; seriesMaxY = seriesMinY = yData[i]; } else if (isNumber(yData[i]) && isNumber(seriesMaxY) && isNumber(seriesMinY)) { seriesMaxX = Math.max(xData[i], seriesMaxX); seriesMinX = Math.min(xData[i], seriesMinX); seriesMaxY = Math.max(yData[i] || seriesMaxY, seriesMaxY); seriesMinY = Math.min(yData[i] || seriesMinY, seriesMinY); } } // Crop data to visible ones with appropriate offset to prevent // cluster size changes on the edge of the plot area. if (xData[i] >= (realExtremes.minX - cropDataOffsetX) && xData[i] <= (realExtremes.maxX + cropDataOffsetX) && (yData[i] || realExtremes.minY) >= (realExtremes.minY - cropDataOffsetY) && (yData[i] || realExtremes.maxY) <= (realExtremes.maxY + cropDataOffsetY)) { visibleXData.push(xData[i]); visibleYData.push(yData[i]); visibleDataIndexes.push(i); } } // Save data max values. if (defined(seriesMaxX) && defined(seriesMinX) && isNumber(seriesMaxY) && isNumber(seriesMinY)) { series.dataMaxX = seriesMaxX; series.dataMinX = seriesMinX; series.dataMaxY = seriesMaxY; series.dataMinY = seriesMinY; } if (isFunction(type)) { algorithm = type; } else if (series.markerClusterAlgorithms) { if (type && series.markerClusterAlgorithms[type]) { algorithm = series.markerClusterAlgorithms[type]; } else { algorithm = visibleXData.length < kmeansThreshold ? series.markerClusterAlgorithms.kmeans : series.markerClusterAlgorithms.grid; } } else { algorithm = () => false; } groupedData = algorithm.call(this, visibleXData, visibleYData, visibleDataIndexes, layoutAlgOptions); clusteredData = groupedData ? series.getClusteredData(groupedData, clusterOptions) : groupedData; // When animation is enabled get old points state. if (clusterOptions.animation && series.markerClusterInfo?.pointsState?.oldState) { // Destroy old points. destroyOldPoints(series.markerClusterInfo.pointsState.oldState); oldPointsState = series.markerClusterInfo.pointsState.newState; } else { oldPointsState = {}; } // Save points old state info. oldDataLen = xData.length; oldMarkerClusterInfo = series.markerClusterInfo; if (clusteredData) { series.dataTable.modified = new DataTableCore({ columns: { x: clusteredData.groupedXData, y: clusteredData.groupedYData } }); series.hasGroupedData = true; series.markerClusterInfo = clusteredData; series.groupMap = clusteredData.groupMap; } baseGeneratePoints.apply(this); if (clusteredData && series.markerClusterInfo) { // Mark cluster points. Safe point reference in the cluster object. series.markerClusterInfo.clusters?.forEach((cluster) => { point = series.points[cluster.index]; point.isCluster = true; point.clusteredData = cluster.data; point.clusterPointsAmount = cluster.data.length; cluster.point = point; // Add zoom to cluster range. addEvent(point, 'click', onPointDrillToCluster); }); // Safe point reference in the noise object. series.markerClusterInfo.noise?.forEach((noise) => { noise.point = series.points[noise.index]; }); // When animation is enabled save points state. if (clusterOptions.animation && series.markerClusterInfo) { series.markerClusterInfo.pointsState = { oldState: oldPointsState, newState: series.getPointsState(clusteredData, oldMarkerClusterInfo, oldDataLen) }; } // Record grouped data in order to let it be destroyed the next time // processData runs. if (!clusterOptions.animation) { this.destroyClusteredData(); } else { this.hideClusteredData(); } this.markerClusterSeriesData = this.hasGroupedData ? this.points : null; } } else { baseGeneratePoints.apply(this); } } /** @private */ function seriesGetClusterDistancesFromPoint(clusters, pointX, pointY) { const pointClusterDistance = []; for (let clusterIndex = 0; clusterIndex < clusters.length; clusterIndex++) { const p1 = valuesToPixels(this, { x: pointX, y: pointY }), p2 = valuesToPixels(this, { x: clusters[clusterIndex].posX, y: clusters[clusterIndex].posY }), distance = Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2)); pointClusterDistance.push({ clusterIndex, distance }); } return pointClusterDistance.sort((a, b) => a.distance - b.distance); } /** @private */ function seriesGetClusteredData(groupedData, options) { const series = this, data = series.options.data, groupedXData = [], groupedYData = [], clusters = [], // Container for clusters. noise = [], // Container for points not belonging to any cluster. groupMap = [], // Prevent minimumClusterSize lower than 2. minimumClusterSize = Math.max(2, options.minimumClusterSize || 2); let index = 0, stateId, point, points, pointUserOptions, pointsLen, marker, clusterPos, pointOptions, clusterTempPos, zoneOptions, clusterZone, clusterZoneClassName; // Check if groupedData is valid when user uses a custom algorithm. if (isFunction(options.layoutAlgorithm.type) && !series.isValidGroupedDataObject(groupedData)) { error('Highcharts marker-clusters module: ' + 'The custom algorithm result is not valid!', false, series.chart); return false; } for (const k in groupedData) { if (groupedData[k].length >= minimumClusterSize) { points = groupedData[k]; stateId = getStateId(); pointsLen = points.length; // Get zone options for cluster. if (options.zones) { for (let i = 0; i < options.zones.length; i++) { if (pointsLen >= options.zones[i].from && pointsLen <= options.zones[i].to) { clusterZone = options.zones[i]; clusterZone.zoneIndex = i; zoneOptions = options.zones[i].marker; clusterZoneClassName = options.zones[i].className; } } } clusterTempPos = getClusterPosition(points); if (options.layoutAlgorithm.type === 'grid' && !options.allowOverlap) { marker = series.options.marker || {}; clusterPos = series.preventClusterCollisions({ x: clusterTempPos.x, y: clusterTempPos.y, key: k, groupedData: groupedData, gridSize: series.getScaledGridSize(options.layoutAlgorithm), defaultRadius: marker.radius || 3 + (marker.lineWidth || 0), clusterRadius: (zoneOptions && zoneOptions.radius) ? zoneOptions.radius : (options.marker || {}).radius || clusterDefaults.marker.radius }); } else { clusterPos = { x: clusterTempPos.x, y: clusterTempPos.y }; } for (let i = 0; i < pointsLen; i++) { points[i].parentStateId = stateId; } clusters.push({ x: clusterPos.x, y: clusterPos.y, id: k, stateId, index, data: points, clusterZone, clusterZoneClassName }); groupedXData.push(clusterPos.x); groupedYData.push(clusterPos.y); groupMap.push({ options: { formatPrefix: 'cluster', dataLabels: options.dataLabels, marker: merge(options.marker, { states: options.states }, zoneOptions || {}) } }); // Save cluster data points options. if (data?.length) { for (let i = 0; i < pointsLen; i++) { if (isObject(data[points[i].dataIndex])) { points[i].options = data[points[i].dataIndex]; } } } index++; zoneOptions = null; } else { for (let i = 0; i < groupedData[k].length; i++) { // Points not belonging to any cluster. point = groupedData[k][i]; stateId = getStateId(); pointOptions = null; pointUserOptions = data?.[point.dataIndex]; groupedXData.push(point.x); groupedYData.push(point.y); point.parentStateId = stateId; noise.push({ x: point.x, y: point.y, id: k, stateId, index, data: groupedData[k] }); if (pointUserOptions && typeof pointUserOptions === 'object' && !isArray(pointUserOptions)) { pointOptions = merge(pointUserOptions, { x: point.x, y: point.y }); } else { pointOptions = { userOptions: pointUserOptions, x: point.x, y: point.y }; } groupMap.push({ options: pointOptions }); index++; } } } return { clusters, noise, groupedXData, groupedYData, groupMap }; } /** @private */ function seriesGetGridOffset() { const series = this, { chart, xAxis, yAxis } = series; let plotLeft = 0, plotTop = 0; if (xAxis && series.dataMinX && series.dataMaxX) { plotLeft = xAxis.reversed ? xAxis.toPixels(series.dataMaxX) : xAxis.toPixels(series.dataMinX); } else { plotLeft = chart.plotLeft; } if (yAxis && series.dataMinY && series.dataMaxY) { plotTop = yAxis.reversed ? yAxis.toPixels(series.dataMinY) : yAxis.toPixels(series.dataMaxY); } else { plotTop = chart.plotTop; } return { plotLeft, plotTop }; } /** * Point state used when animation is enabled to compare and bind old points * with new ones. * @private */ function seriesGetPointsState(clusteredData, oldMarkerClusterInfo, dataLength) { const oldDataStateArr = oldMarkerClusterInfo ? getDataState(oldMarkerClusterInfo, dataLength) : [], newDataStateArr = getDataState(clusteredData, dataLength), state = {}; // Clear global array before populate with new ids. oldPointsStateId = []; // Build points state structure. clusteredData.clusters.forEach((cluster) => { state[cluster.stateId] = { x: cluster.x, y: cluster.y, id: cluster.stateId, point: cluster.point, parentsId: [] }; }); clusteredData.noise.forEach((noise) => { state[noise.stateId] = { x: noise.x, y: noise.y, id: noise.stateId, point: noise.point, parentsId: [] }; }); let newState, oldState; // Bind new and old state. for (let i = 0; i < newDataStateArr.length; i++) { newState = newDataStateArr[i]; oldState = oldDataStateArr[i]; if (newState?.parentStateId && oldState?.parentStateId && state[newState.parentStateId]?.parentsId.indexOf(oldState.parentStateId) === -1) { state[newState.parentStateId].parentsId.push(oldState.parentStateId); if (oldPointsStateId.indexOf(oldState.parentStateId) === -1) { oldPointsStateId.push(oldState.parentStateId); } } } return state; } /** @private */ function seriesGetRealExtremes() { const chart = this.chart, x = chart.mapView ? 0 : chart.plotLeft, y = chart.mapView ? 0 : chart.plotTop, p1 = pixelsToValues(this, { x, y }), p2 = pixelsToValues(this, { x: x + chart.plotWidth, y: x + chart.plotHeight }), realMinX = p1.x, realMaxX = p2.x, realMinY = p1.y, realMaxY = p2.y; return { minX: Math.min(realMinX, realMaxX), maxX: Math.max(realMinX, realMaxX), minY: Math.min(realMinY, realMaxY), maxY: Math.max(realMinY, realMaxY) }; } /** @private */ function seriesGetScaledGridSize(options) { const series = this, xAxis = series.xAxis, mapView = series.chart.mapView, processedGridSize = options.processedGridSize || clusterDefaults.layoutAlgorithm.gridSize; let search = true, k = 1, divider = 1; if (!series.gridValueSize) { if (mapView) { series.gridValueSize = processedGridSize / mapView.getScale(); } else { series.gridValueSize = Math.abs(xAxis.toValue(processedGridSize) - xAxis.toValue(0)); } } const gridSize = mapView ? series.gridValueSize * mapView.getScale() : xAxis.toPixels(series.gridValueSize) - xAxis.toPixels(0); const scale = +(processedGridSize / gridSize).toFixed(14); // Find the level and its divider. while (search && scale !== 1) { const level = Math.pow(2, k); if (scale > 0.75 && scale < 1.25) { search = false; } else if (scale >= (1 / level) && scale < 2 * (1 / level)) { search = false; divider = level; } else if (scale <= level && scale > level / 2) { search = false; divider = 1 / level; } k++; } return (processedGridSize / divider) / scale; } /** * Hide clustered data points. * @private */ function seriesHideClusteredData() { const clusteredSeriesData = this.markerClusterSeriesData, oldState = this.markerClusterInfo?.pointsState?.oldState, oldPointsId = oldPointsStateId.map((elem) => oldState?.[elem].point?.id || ''); clusteredSeriesData?.forEach((point) => { // If an old point is used in animation hide it, otherwise destroy. if (point && oldPointsId.indexOf(point.id) !== -1) { if (point.graphic) { point.graphic.hide(); } if (point.dataLabel) { point.dataLabel.hide(); } } else { point?.destroy?.(); } }); } /** * Check if user algorithm result is valid groupedDataObject. * @private */ function seriesIsValidGroupedDataObject(groupedData) { let result = false; if (!isObject(groupedData)) { return false; } objectEach(groupedData, (elem) => { result = true; if (!isArray(elem) || !elem.length) { result = false; return; } for (let i = 0; i < elem.length; i++) { if (!isObject(elem[i]) || (!elem[i].x || !elem[i].y)) { result = false; return; } } }); return result; } /** @private */ function seriesPreventClusterCollisions(props) { const series = this, [gridY, gridX] = props.key.split(':').map(parseFloat), gridSize = props.gridSize, groupedData = props.groupedData, defaultRadius = props.defaultRadius, clusterRadius = props.clusterRadius, gridXPx = gridX * gridSize, gridYPx = gridY * gridSize, propsPx = valuesToPixels(series, props), gridsToCheckCollision = [], clusterMarkerOptions = series.options.cluster?.marker, zoneOptions = series.options.cluster?.zones, gridOffset = series.getGridOffset(); let xPixel = propsPx.x, yPixel = propsPx.y, pointsLen = 0, radius = 0, nextXPixel, nextYPixel, signX, signY, cornerGridX, cornerGridY, j, itemX, itemY, nextClusterPos, maxDist, keys; // Distance to the grid start. xPixel -= gridOffset.plotLeft; yPixel -= gridOffset.plotTop; for (let i = 1; i < 5; i++) { signX = i % 2 ? -1 : 1; signY = i < 3 ? -1 : 1; cornerGridX = Math.floor((xPixel + signX * clusterRadius) / gridSize); cornerGridY = Math.floor((yPixel + signY * clusterRadius) / gridSize); keys = [ cornerGridY + ':' + cornerGridX, cornerGridY + ':' + gridX, gridY + ':' + cornerGridX ]; for (j = 0; j < keys.length; j++) { if (gridsToCheckCollision.indexOf(keys[j]) === -1 && keys[j] !== props.key) { gridsToCheckCollision.push(keys[j]); } } } for (const item of gridsToCheckCollision) { if (groupedData[item]) { // Cluster or noise position is already computed. if (!groupedData[item].posX) { nextClusterPos = getClusterPosition(groupedData[item]); groupedData[item].posX = nextClusterPos.x; groupedData[item].posY = nextClusterPos.y; } const pos = valuesToPixels(series, { x: groupedData[item].posX || 0, y: groupedData[item].posY || 0 }); nextXPixel = pos.x - gridOffset.plotLeft; nextYPixel = pos.y - gridOffset.plotTop; [itemY, itemX] = item.split(':').map(parseFloat); if (zoneOptions) { pointsLen = groupedData[item].length; for (let i = 0; i < zoneOptions.length; i++) { if (pointsLen >= zoneOptions[i].from && pointsLen <= zoneOptions[i].to) { if (defined(zoneOptions[i].marker?.radius)) { radius = zoneOptions[i].marker.radius || 0; } else if (clusterMarkerOptions?.radius) { radius = clusterMarkerOptions.radius; } else { radius = clusterDefaults.marker.radius; } } } } if (groupedData[item].length > 1 && radius === 0 && clusterMarkerOptions?.radius) { radius = clusterMarkerOptions.radius; } else if (groupedData[item].length === 1) { radius = defaultRadius; } maxDist = clusterRadius + radius; radius = 0; if (itemX !== gridX && Math.abs(xPixel - nextXPixel) < maxDist) { xPixel = itemX - gridX < 0 ? gridXPx + clusterRadius : gridXPx + gridSize - clusterRadius; } if (itemY !== gridY && Math.abs(yPixel - nextYPixel) < maxDist) { yPixel = itemY - gridY < 0 ? gridYPx + clusterRadius : gridYPx + gridSize - clusterRadius; } } } const pos = pixelsToValues(series, { x: xPixel + gridOffset.plotLeft, y: yPixel + gridOffset.plotTop }); groupedData[props.key].posX = pos.x; groupedData[props.key].posY = pos.y; return pos; } /** * Util function. * @private */ function valuesToPixels(series, pos) { const { chart, xAxis, yAxis } = series; if (chart.mapView) { return chart.mapView.projectedUnitsToPixels(pos); } return { x: xAxis ? xAxis.toPixels(pos.x) : 0, y: yAxis ? yAxis.toPixels(pos.y) : 0 }; } /* * * * Default Export * * */ const MarkerClusterScatter = { compose }; export default MarkerClusterScatter;