helimap
Version:
map heliware
185 lines (170 loc) • 6.08 kB
JavaScript
/**
* @module ol/geom/flat/geodesic
*/
import {get as getProjection, getTransform} from '../../proj.js';
import {squaredSegmentDistance, toDegrees, toRadians} from '../../math.js';
/**
* @param {function(number): import("../../coordinate.js").Coordinate} interpolate Interpolate function.
* @param {import("../../proj.js").TransformFunction} transform Transform from longitude/latitude to
* projected coordinates.
* @param {number} squaredTolerance Squared tolerance.
* @return {Array<number>} Flat coordinates.
*/
function line(interpolate, transform, squaredTolerance) {
// FIXME reduce garbage generation
// FIXME optimize stack operations
/** @type {Array<number>} */
const flatCoordinates = [];
let geoA = interpolate(0);
let geoB = interpolate(1);
let a = transform(geoA);
let b = transform(geoB);
/** @type {Array<import("../../coordinate.js").Coordinate>} */
const geoStack = [geoB, geoA];
/** @type {Array<import("../../coordinate.js").Coordinate>} */
const stack = [b, a];
/** @type {Array<number>} */
const fractionStack = [1, 0];
/** @type {!Object<string, boolean>} */
const fractions = {};
let maxIterations = 1e5;
let geoM, m, fracA, fracB, fracM, key;
while (--maxIterations > 0 && fractionStack.length > 0) {
// Pop the a coordinate off the stack
fracA = fractionStack.pop();
geoA = geoStack.pop();
a = stack.pop();
// Add the a coordinate if it has not been added yet
key = fracA.toString();
if (!(key in fractions)) {
flatCoordinates.push(a[0], a[1]);
fractions[key] = true;
}
// Pop the b coordinate off the stack
fracB = fractionStack.pop();
geoB = geoStack.pop();
b = stack.pop();
// Find the m point between the a and b coordinates
fracM = (fracA + fracB) / 2;
geoM = interpolate(fracM);
m = transform(geoM);
if (
squaredSegmentDistance(m[0], m[1], a[0], a[1], b[0], b[1]) <
squaredTolerance
) {
// If the m point is sufficiently close to the straight line, then we
// discard it. Just use the b coordinate and move on to the next line
// segment.
flatCoordinates.push(b[0], b[1]);
key = fracB.toString();
fractions[key] = true;
} else {
// Otherwise, we need to subdivide the current line segment. Split it
// into two and push the two line segments onto the stack.
fractionStack.push(fracB, fracM, fracM, fracA);
stack.push(b, m, m, a);
geoStack.push(geoB, geoM, geoM, geoA);
}
}
return flatCoordinates;
}
/**
* Generate a great-circle arcs between two lat/lon points.
* @param {number} lon1 Longitude 1 in degrees.
* @param {number} lat1 Latitude 1 in degrees.
* @param {number} lon2 Longitude 2 in degrees.
* @param {number} lat2 Latitude 2 in degrees.
* @param {import("../../proj/Projection.js").default} projection Projection.
* @param {number} squaredTolerance Squared tolerance.
* @return {Array<number>} Flat coordinates.
*/
export function greatCircleArc(
lon1,
lat1,
lon2,
lat2,
projection,
squaredTolerance
) {
const geoProjection = getProjection('EPSG:4326');
const cosLat1 = Math.cos(toRadians(lat1));
const sinLat1 = Math.sin(toRadians(lat1));
const cosLat2 = Math.cos(toRadians(lat2));
const sinLat2 = Math.sin(toRadians(lat2));
const cosDeltaLon = Math.cos(toRadians(lon2 - lon1));
const sinDeltaLon = Math.sin(toRadians(lon2 - lon1));
const d = sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosDeltaLon;
return line(
/**
* @param {number} frac Fraction.
* @return {import("../../coordinate.js").Coordinate} Coordinate.
*/
function (frac) {
if (1 <= d) {
return [lon2, lat2];
}
const D = frac * Math.acos(d);
const cosD = Math.cos(D);
const sinD = Math.sin(D);
const y = sinDeltaLon * cosLat2;
const x = cosLat1 * sinLat2 - sinLat1 * cosLat2 * cosDeltaLon;
const theta = Math.atan2(y, x);
const lat = Math.asin(sinLat1 * cosD + cosLat1 * sinD * Math.cos(theta));
const lon =
toRadians(lon1) +
Math.atan2(
Math.sin(theta) * sinD * cosLat1,
cosD - sinLat1 * Math.sin(lat)
);
return [toDegrees(lon), toDegrees(lat)];
},
getTransform(geoProjection, projection),
squaredTolerance
);
}
/**
* Generate a meridian (line at constant longitude).
* @param {number} lon Longitude.
* @param {number} lat1 Latitude 1.
* @param {number} lat2 Latitude 2.
* @param {import("../../proj/Projection.js").default} projection Projection.
* @param {number} squaredTolerance Squared tolerance.
* @return {Array<number>} Flat coordinates.
*/
export function meridian(lon, lat1, lat2, projection, squaredTolerance) {
const epsg4326Projection = getProjection('EPSG:4326');
return line(
/**
* @param {number} frac Fraction.
* @return {import("../../coordinate.js").Coordinate} Coordinate.
*/
function (frac) {
return [lon, lat1 + (lat2 - lat1) * frac];
},
getTransform(epsg4326Projection, projection),
squaredTolerance
);
}
/**
* Generate a parallel (line at constant latitude).
* @param {number} lat Latitude.
* @param {number} lon1 Longitude 1.
* @param {number} lon2 Longitude 2.
* @param {import("../../proj/Projection.js").default} projection Projection.
* @param {number} squaredTolerance Squared tolerance.
* @return {Array<number>} Flat coordinates.
*/
export function parallel(lat, lon1, lon2, projection, squaredTolerance) {
const epsg4326Projection = getProjection('EPSG:4326');
return line(
/**
* @param {number} frac Fraction.
* @return {import("../../coordinate.js").Coordinate} Coordinate.
*/
function (frac) {
return [lon1 + (lon2 - lon1) * frac, lat];
},
getTransform(epsg4326Projection, projection),
squaredTolerance
);
}