UNPKG

heap-typed

Version:
346 lines (283 loc) 10 kB
![NPM](https://img.shields.io/npm/l/heap-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![npm](https://img.shields.io/npm/dw/heap-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![npm bundle size](https://img.shields.io/bundlephobia/minzip/heap-typed) ![npm bundle size](https://img.shields.io/bundlephobia/min/heap-typed) ![npm](https://img.shields.io/npm/v/heap-typed) # What ## Brief This is a standalone Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete [data-structure-typed](https://www.npmjs.com/package/data-structure-typed) package # How ## install ### npm ```bash npm i heap-typed --save ``` ### yarn ```bash yarn add heap-typed ``` ### snippet [//]: # (No deletion!!! Start of Example Replace Section) ### Use Heap to sort an array ```typescript function heapSort(arr: number[]): number[] { const heap = new Heap<number>(arr, { comparator: (a, b) => a - b }); const sorted: number[] = []; while (!heap.isEmpty()) { sorted.push(heap.poll()!); // Poll minimum element } return sorted; } const array = [5, 3, 8, 4, 1, 2]; console.log(heapSort(array)); // [1, 2, 3, 4, 5, 8] ``` ### Use Heap to solve top k problems ```typescript function topKElements(arr: number[], k: number): number[] { const heap = new Heap<number>([], { comparator: (a, b) => b - a }); // Max heap arr.forEach(num => { heap.add(num); if (heap.size > k) heap.poll(); // Keep the heap size at K }); return heap.toArray(); } const numbers = [10, 30, 20, 5, 15, 25]; console.log(topKElements(numbers, 3)); // [15, 10, 5] ``` ### Use Heap to merge sorted sequences ```typescript function mergeSortedSequences(sequences: number[][]): number[] { const heap = new Heap<{ value: number; seqIndex: number; itemIndex: number }>([], { comparator: (a, b) => a.value - b.value // Min heap }); // Initialize heap sequences.forEach((seq, seqIndex) => { if (seq.length) { heap.add({ value: seq[0], seqIndex, itemIndex: 0 }); } }); const merged: number[] = []; while (!heap.isEmpty()) { const { value, seqIndex, itemIndex } = heap.poll()!; merged.push(value); if (itemIndex + 1 < sequences[seqIndex].length) { heap.add({ value: sequences[seqIndex][itemIndex + 1], seqIndex, itemIndex: itemIndex + 1 }); } } return merged; } const sequences = [ [1, 4, 7], [2, 5, 8], [3, 6, 9] ]; console.log(mergeSortedSequences(sequences)); // [1, 2, 3, 4, 5, 6, 7, 8, 9] ``` ### Use Heap to dynamically maintain the median ```typescript class MedianFinder { private low: MaxHeap<number>; // Max heap, stores the smaller half private high: MinHeap<number>; // Min heap, stores the larger half constructor() { this.low = new MaxHeap<number>([]); this.high = new MinHeap<number>([]); } addNum(num: number): void { if (this.low.isEmpty() || num <= this.low.peek()!) this.low.add(num); else this.high.add(num); // Balance heaps if (this.low.size > this.high.size + 1) this.high.add(this.low.poll()!); else if (this.high.size > this.low.size) this.low.add(this.high.poll()!); } findMedian(): number { if (this.low.size === this.high.size) return (this.low.peek()! + this.high.peek()!) / 2; return this.low.peek()!; } } const medianFinder = new MedianFinder(); medianFinder.addNum(10); console.log(medianFinder.findMedian()); // 10 medianFinder.addNum(20); console.log(medianFinder.findMedian()); // 15 medianFinder.addNum(30); console.log(medianFinder.findMedian()); // 20 medianFinder.addNum(40); console.log(medianFinder.findMedian()); // 25 medianFinder.addNum(50); console.log(medianFinder.findMedian()); // 30 ``` ### Use Heap for load balancing ```typescript function loadBalance(requests: number[], servers: number): number[] { const serverHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // min heap const serverLoads = new Array(servers).fill(0); for (let i = 0; i < servers; i++) { serverHeap.add({ id: i, load: 0 }); } requests.forEach(req => { const server = serverHeap.poll()!; serverLoads[server.id] += req; server.load += req; serverHeap.add(server); // The server after updating the load is re-entered into the heap }); return serverLoads; } const requests = [5, 2, 8, 3, 7]; console.log(loadBalance(requests, 3)); // [12, 8, 5] ``` ### Use Heap to schedule tasks ```typescript type Task = [string, number]; function scheduleTasks(tasks: Task[], machines: number): Map<number, Task[]> { const machineHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // Min heap const allocation = new Map<number, Task[]>(); // Initialize the load on each machine for (let i = 0; i < machines; i++) { machineHeap.add({ id: i, load: 0 }); allocation.set(i, []); } // Assign tasks tasks.forEach(([task, load]) => { const machine = machineHeap.poll()!; allocation.get(machine.id)!.push([task, load]); machine.load += load; machineHeap.add(machine); // The machine after updating the load is re-entered into the heap }); return allocation; } const tasks: Task[] = [ ['Task1', 3], ['Task2', 1], ['Task3', 2], ['Task4', 5], ['Task5', 4] ]; const expectedMap = new Map<number, Task[]>(); expectedMap.set(0, [ ['Task1', 3], ['Task4', 5] ]); expectedMap.set(1, [ ['Task2', 1], ['Task3', 2], ['Task5', 4] ]); console.log(scheduleTasks(tasks, 2)); // expectedMap ``` [//]: # (No deletion!!! End of Example Replace Section) ## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) <a href="https://github.com/zrwusa/vivid-algorithm" target="_blank">Examples Repository</a> ## Data Structures <table> <thead> <tr> <th>Data Structure</th> <th>Unit Test</th> <th>Performance Test</th> <th>API Docs</th> </tr> </thead> <tbody> <tr> <td>Heap</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/Heap.html"><span>Heap</span></a></td> </tr> </tbody> </table> ## Standard library data structure comparison <table> <thead> <tr> <th>Data Structure Typed</th> <th>C++ STL</th> <th>java.util</th> <th>Python collections</th> </tr> </thead> <tbody> <tr> <td>Heap&lt;E&gt;</td> <td>priority_queue&lt;T&gt;</td> <td>PriorityQueue&lt;E&gt;</td> <td>heapq</td> </tr> </tbody> </table> ## Benchmark [//]: # (No deletion!!! Start of Replace Section) <div class="json-to-html-collapse clearfix 0"> <div class='collapsible level0' ><span class='json-to-html-label'>heap</span></div> <div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>10,000 add & pop</td><td>5.80</td><td>172.35</td><td>8.78e-5</td></tr><tr><td>10,000 fib add & pop</td><td>357.92</td><td>2.79</td><td>0.00</td></tr></table></div> </div> [//]: # (No deletion!!! End of Replace Section) ## Built-in classic algorithms <table> <thead> <tr> <th>Algorithm</th> <th>Function Description</th> <th>Iteration Type</th> </tr> </thead> <tbody> </tbody> </table> ## Software Engineering Design Standards <table> <tr> <th>Principle</th> <th>Description</th> </tr> <tr> <td>Practicality</td> <td>Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.</td> </tr> <tr> <td>Extensibility</td> <td>Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.</td> </tr> <tr> <td>Modularization</td> <td>Includes data structure modularization and independent NPM packages.</td> </tr> <tr> <td>Efficiency</td> <td>All methods provide time and space complexity, comparable to native JS performance.</td> </tr> <tr> <td>Maintainability</td> <td>Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.</td> </tr> <tr> <td>Testability</td> <td>Automated and customized unit testing, performance testing, and integration testing.</td> </tr> <tr> <td>Portability</td> <td>Plans for porting to Java, Python, and C++, currently achieved to 80%.</td> </tr> <tr> <td>Reusability</td> <td>Fully decoupled, minimized side effects, and adheres to OOP.</td> </tr> <tr> <td>Security</td> <td>Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.</td> </tr> <tr> <td>Scalability</td> <td>Data structure software does not involve load issues.</td> </tr> </table>