UNPKG

heap-typed

Version:

Heap. Javascript & Typescript Data Structure.

620 lines (556 loc) 21.9 kB
import type { BinaryTreeDeleteResult, BTNRep, CRUD, OptNode, RBTNColor, RBTreeOptions, RedBlackTreeNested, RedBlackTreeNodeNested } from '../../types'; import { BST, BSTNode } from './bst'; import { IBinaryTree } from '../../interfaces'; export class RedBlackTreeNode< K = any, V = any, NODE extends RedBlackTreeNode<K, V, NODE> = RedBlackTreeNodeNested<K, V> > extends BSTNode<K, V, NODE> { /** * The constructor function initializes a Red-Black Tree Node with a key, an optional value, and a * color. * @param {K} key - The key parameter is of type K and represents the key of the node in the * Red-Black Tree. * @param {V} [value] - The `value` parameter is an optional parameter that represents the value * associated with the key in the Red-Black Tree Node. It is not required and can be omitted when * creating a new instance of the Red-Black Tree Node. * @param {RBTNColor} color - The `color` parameter is used to specify the color of the Red-Black * Tree Node. It is an optional parameter with a default value of `'BLACK'`. */ constructor(key: K, value?: V, color: RBTNColor = 'BLACK') { super(key, value); this._color = color; } protected _color: RBTNColor; /** * The function returns the color value of a variable. * @returns The color value stored in the private variable `_color`. */ get color(): RBTNColor { return this._color; } /** * The function sets the color property to the specified value. * @param {RBTNColor} value - The value parameter is of type RBTNColor. */ set color(value: RBTNColor) { this._color = value; } } export class RedBlackTree< K = any, V = any, R = object, NODE extends RedBlackTreeNode<K, V, NODE> = RedBlackTreeNode<K, V, RedBlackTreeNodeNested<K, V>>, TREE extends RedBlackTree<K, V, R, NODE, TREE> = RedBlackTree<K, V, R, NODE, RedBlackTreeNested<K, V, R, NODE>> > extends BST<K, V, R, NODE, TREE> implements IBinaryTree<K, V, R, NODE, TREE> { /** * This is the constructor function for a Red-Black Tree data structure in TypeScript. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter is an * iterable object that can contain either keys, nodes, entries, or raw elements. It is used to * initialize the RBTree with the provided elements. * @param [options] - The `options` parameter is an optional object that can be passed to the * constructor. It is of type `RBTreeOptions<K, V, R>`. This object can contain various options for * configuring the behavior of the Red-Black Tree. The specific properties and their meanings would * depend on the implementation */ constructor(keysNodesEntriesOrRaws: Iterable<R | BTNRep<K, V, NODE>> = [], options?: RBTreeOptions<K, V, R>) { super([], options); this._root = this.NIL; if (keysNodesEntriesOrRaws) { this.addMany(keysNodesEntriesOrRaws); } } protected override _root: NODE | undefined; /** * The function returns the root node of a tree or undefined if there is no root. * @returns The root node of the tree structure, or undefined if there is no root node. */ override get root(): NODE | undefined { return this._root; } /** * The function creates a new Red-Black Tree node with the specified key, value, and color. * @param {K} key - The key parameter represents the key value of the node being created. It is of * type K, which is a generic type that can be replaced with any specific type when using the * function. * @param {V} [value] - The `value` parameter is an optional parameter that represents the value * associated with the key in the node. It is not required and can be omitted if you only need to * create a node with a key. * @param {RBTNColor} [color=BLACK] - The "color" parameter is used to specify the color of the node * in a Red-Black Tree. It can have two possible values: "RED" or "BLACK". By default, the color is * set to "BLACK" if not specified. * @returns A new instance of a RedBlackTreeNode with the specified key, value, and color is being * returned. */ override createNode(key: K, value?: V, color: RBTNColor = 'BLACK'): NODE { return new RedBlackTreeNode<K, V, NODE>(key, value, color) as NODE; } /** * The function creates a new Red-Black Tree with the specified options. * @param [options] - The `options` parameter is an optional object that contains additional * configuration options for creating the Red-Black Tree. It has the following properties: * @returns a new instance of a RedBlackTree object. */ override createTree(options?: RBTreeOptions<K, V, R>): TREE { return new RedBlackTree<K, V, R, NODE, TREE>([], { iterationType: this.iterationType, isMapMode: this._isMapMode, comparator: this._comparator, toEntryFn: this._toEntryFn, ...options }) as TREE; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function checks if the input is an instance of the RedBlackTreeNode class. * @param {BTNRep<K, V, NODE> | R} keyNodeEntryOrRaw - The parameter * `keyNodeEntryOrRaw` can be of type `R` or `BTNRep<K, V, NODE>`. * @returns a boolean value indicating whether the input parameter `keyNodeEntryOrRaw` is * an instance of the `RedBlackTreeNode` class. */ override isNode(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R): keyNodeEntryOrRaw is NODE { return keyNodeEntryOrRaw instanceof RedBlackTreeNode; } // /** // * Time Complexity: O(1) // * Space Complexity: O(1) // */ // // /** // * Time Complexity: O(1) // * Space Complexity: O(1) // * // * The function `keyValueNodeEntryRawToNodeAndValue` takes a key, value, or entry and returns a node if it is // * valid, otherwise it returns undefined. // * @param {BTNRep<K, V, NODE>} keyNodeEntryOrRaw - The key, value, or entry to convert. // * @param {V} [value] - The value associated with the key (if `keyNodeEntryOrRaw` is a key). // * @returns {NODE | undefined} - The corresponding Red-Black Tree node, or `undefined` if conversion fails. // */ // override keyValueNodeEntryRawToNodeAndValue(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R, value?: V): NODE | undefined { // // if (keyNodeEntryOrRaw === null || keyNodeEntryOrRaw === undefined) return; // if (this.isNode(keyNodeEntryOrRaw)) return keyNodeEntryOrRaw; // // if (this._toEntryFn) { // const [key, entryValue] = this._toEntryFn(keyNodeEntryOrRaw as R); // if (this.isKey(key)) return this.createNode(key, value ?? entryValue, 'RED'); // } // // if (this.isEntry(keyNodeEntryOrRaw)) { // const [key, value] = keyNodeEntryOrRaw; // if (key === undefined || key === null) return; // else return this.createNode(key, value, 'RED'); // } // // if (this.isKey(keyNodeEntryOrRaw)) return this.createNode(keyNodeEntryOrRaw, value, 'RED'); // // return ; // } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The "clear" function sets the root node of a data structure to a sentinel value and resets the * size counter to zero. */ override clear() { super.clear(); this._root = this.NIL; } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The function adds a new node to a binary search tree and returns true if the node was successfully * added. * @param {BTNRep<K, V, NODE> | R} keyNodeEntryOrRaw - The parameter * `keyNodeEntryOrRaw` can accept a value of type `R` or `BTNRep<K, V, NODE>`. * @param {V} [value] - The `value` parameter is an optional value that you want to associate with * the key in the data structure. It represents the value that you want to add or update in the data * structure. * @returns The method is returning a boolean value. If a new node is successfully added to the tree, * the method returns true. If the node already exists and its value is updated, the method also * returns true. If the node cannot be added or updated, the method returns false. */ override add(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R, value?: V): boolean { const [newNode, newValue] = this.keyValueNodeEntryRawToNodeAndValue(keyNodeEntryOrRaw, value); if (!this.isRealNode(newNode)) return false; const insertStatus = this._insert(newNode); if (insertStatus === 'CREATED') { // Ensure the root is black if (this.isRealNode(this._root)) { this._root.color = 'BLACK'; } else { return false; } if (this._isMapMode) this._setValue(newNode.key, newValue); this._size++; return true; } else return insertStatus === 'UPDATED'; } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The function overrides the delete method in a binary tree data structure to remove a node based on * a given predicate and maintain the binary search tree properties. * @param {BTNRep<K, V, NODE> | R} keyNodeEntryOrRaw - The `keyNodeEntryOrRaw` * parameter in the `override delete` method is used to specify the condition or key based on which a * node should be deleted from the binary tree. It can be a key, a node, an entry, or a predicate * function that determines which node(s) should be deleted. * @returns The `override delete` method is returning an array of `BinaryTreeDeleteResult<NODE>` * objects. Each object in the array contains information about the deleted node and whether * balancing is needed. */ override delete(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R): BinaryTreeDeleteResult<NODE>[] { if (keyNodeEntryOrRaw === null) return []; const results: BinaryTreeDeleteResult<NODE>[] = []; let nodeToDelete: OptNode<NODE>; if (this._isPredicate(keyNodeEntryOrRaw)) nodeToDelete = this.getNode(keyNodeEntryOrRaw); else nodeToDelete = this.isRealNode(keyNodeEntryOrRaw) ? keyNodeEntryOrRaw : this.getNode(keyNodeEntryOrRaw); if (!nodeToDelete) { return results; } let originalColor = nodeToDelete.color; let replacementNode: NODE | undefined; if (!this.isRealNode(nodeToDelete.left)) { replacementNode = nodeToDelete.right; this._transplant(nodeToDelete, nodeToDelete.right); } else if (!this.isRealNode(nodeToDelete.right)) { replacementNode = nodeToDelete.left; this._transplant(nodeToDelete, nodeToDelete.left); } else { const successor = this.getLeftMost(node => node, nodeToDelete.right); if (successor) { originalColor = successor.color; replacementNode = successor.right; if (successor.parent === nodeToDelete) { if (this.isRealNode(replacementNode)) { replacementNode.parent = successor; } } else { this._transplant(successor, successor.right); successor.right = nodeToDelete.right; if (this.isRealNode(successor.right)) { successor.right.parent = successor; } } this._transplant(nodeToDelete, successor); successor.left = nodeToDelete.left; if (this.isRealNode(successor.left)) { successor.left.parent = successor; } successor.color = nodeToDelete.color; } } if (this._isMapMode) this._store.delete(nodeToDelete.key); this._size--; // If the original color was black, fix the tree if (originalColor === 'BLACK') { this._deleteFixup(replacementNode); } results.push({ deleted: nodeToDelete, needBalanced: undefined }); return results; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function sets the root of a tree-like structure and updates the parent property of the new * root. * @param {NODE | undefined} v - v is a parameter of type NODE or undefined. */ protected override _setRoot(v: NODE | undefined) { if (v) { v.parent = undefined; } this._root = v; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function replaces an old node with a new node while preserving the color of the old node. * @param {NODE} oldNode - The `oldNode` parameter represents the node that needs to be replaced in * the data structure. * @param {NODE} newNode - The `newNode` parameter is of type `NODE`, which represents a node in a * data structure. * @returns The method is returning the result of calling the `_replaceNode` method from the * superclass, with the `oldNode` and `newNode` parameters. */ protected override _replaceNode(oldNode: NODE, newNode: NODE): NODE { newNode.color = oldNode.color; return super._replaceNode(oldNode, newNode); } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The `_insert` function inserts a node into a binary search tree and performs necessary fix-ups to * maintain the red-black tree properties. * @param {NODE} node - The `node` parameter represents the node that needs to be inserted into the * binary search tree. * @returns a string value indicating the result of the insertion operation. It can return either * 'UPDATED' if the node with the same key already exists and was updated, or 'CREATED' if a new node * was created and inserted into the tree. */ protected _insert(node: NODE): CRUD { let current = this.root; let parent: NODE | undefined = undefined; while (this.isRealNode(current)) { parent = current; const compared = this.comparator(node.key, current.key); if (compared < 0) { current = current.left ?? this.NIL; } else if (compared > 0) { current = current.right ?? this.NIL; } else { this._replaceNode(current, node); return 'UPDATED'; } } node.parent = parent; if (!parent) { this._setRoot(node); } else if (node.key < parent.key) { parent.left = node; } else { parent.right = node; } node.left = this.NIL; node.right = this.NIL; node.color = 'RED'; this._insertFixup(node); return 'CREATED'; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `_transplant` is used to replace a node `u` with another node `v` in a binary tree. * @param {NODE} u - The parameter "u" represents a node in a binary tree. * @param {NODE | undefined} v - The parameter `v` is of type `NODE | undefined`, which means it can * either be a `NODE` object or `undefined`. */ protected _transplant(u: NODE, v: NODE | undefined): void { if (!u.parent) { this._setRoot(v); } else if (u === u.parent.left) { u.parent.left = v; } else { u.parent.right = v; } if (v) { v.parent = u.parent; } } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The `_insertFixup` function is used to fix the Red-Black Tree after inserting a new node. * @param {NODE | undefined} z - The parameter `z` represents a node in the Red-Black Tree data * structure. It can either be a valid node or `undefined`. */ protected _insertFixup(z: NODE | undefined): void { // Continue fixing the tree as long as the parent of z is red while (z?.parent?.color === 'RED') { // Check if the parent of z is the left child of its parent if (z.parent === z.parent.parent?.left) { // Case 1: The uncle (y) of z is red const y = z.parent.parent.right; if (y?.color === 'RED') { // Set colors to restore properties of Red-Black Tree z.parent.color = 'BLACK'; y.color = 'BLACK'; z.parent.parent.color = 'RED'; // Move up the tree to continue fixing z = z.parent.parent; } else { // Case 2: The uncle (y) of z is black, and z is a right child if (z === z.parent.right) { // Perform a left rotation to transform the case into Case 3 z = z.parent; this._leftRotate(z); } // Case 3: The uncle (y) of z is black, and z is a left child // Adjust colors and perform a right rotation if (z && this.isRealNode(z.parent) && this.isRealNode(z.parent.parent)) { z.parent.color = 'BLACK'; z.parent.parent.color = 'RED'; this._rightRotate(z.parent.parent); } } } else { // Symmetric case for the right child (left and right exchanged) // Follow the same logic as above with left and right exchanged const y: NODE | undefined = z?.parent?.parent?.left; if (y?.color === 'RED') { z.parent.color = 'BLACK'; y.color = 'BLACK'; z.parent.parent!.color = 'RED'; z = z.parent.parent; } else { if (z === z.parent.left) { z = z.parent; this._rightRotate(z); } if (z && this.isRealNode(z.parent) && this.isRealNode(z.parent.parent)) { z.parent.color = 'BLACK'; z.parent.parent.color = 'RED'; this._leftRotate(z.parent.parent); } } } } // Ensure that the root is black after fixing if (this.isRealNode(this._root)) this._root.color = 'BLACK'; } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The `_deleteFixup` function is used to fix the red-black tree after a node deletion by adjusting * the colors and performing rotations. * @param {NODE | undefined} node - The `node` parameter represents a node in a binary tree. It can * be either a valid node object or `undefined`. * @returns The function does not return any value. It has a return type of `void`, which means it * does not return anything. */ protected _deleteFixup(node: NODE | undefined): void { // Early exit condition if (!node || node === this.root || node.color === 'BLACK') { if (node) { node.color = 'BLACK'; // Ensure the final node is black } return; } while (node && node !== this.root && node.color === 'BLACK') { const parent: NODE | undefined = node.parent; if (!parent) { break; // Ensure the loop terminates if there's an issue with the tree structure } if (node === parent.left) { let sibling = parent.right; // Cases 1 and 2: Sibling is red or both children of sibling are black if (sibling?.color === 'RED') { sibling.color = 'BLACK'; parent.color = 'RED'; this._leftRotate(parent); sibling = parent.right; } // Case 3: Sibling's left child is black if ((sibling?.left?.color ?? 'BLACK') === 'BLACK') { if (sibling) sibling.color = 'RED'; node = parent; } else { // Case 4: Adjust colors and perform a right rotation if (sibling?.left) sibling.left.color = 'BLACK'; if (sibling) sibling.color = parent.color; parent.color = 'BLACK'; this._rightRotate(parent); node = this.root; } } else { // Symmetric case for the right child (left and right exchanged) let sibling = parent.left; // Cases 1 and 2: Sibling is red or both children of sibling are black if (sibling?.color === 'RED') { sibling.color = 'BLACK'; if (parent) parent.color = 'RED'; this._rightRotate(parent); if (parent) sibling = parent.left; } // Case 3: Sibling's left child is black if ((sibling?.right?.color ?? 'BLACK') === 'BLACK') { if (sibling) sibling.color = 'RED'; node = parent; } else { // Case 4: Adjust colors and perform a left rotation if (sibling?.right) sibling.right.color = 'BLACK'; if (sibling) sibling.color = parent.color; if (parent) parent.color = 'BLACK'; this._leftRotate(parent); node = this.root; } } } // Ensure that the final node (possibly the root) is black if (node) { node.color = 'BLACK'; } } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_leftRotate` function performs a left rotation on a given node in a binary tree. * @param {NODE | undefined} x - The parameter `x` is of type `NODE | undefined`. It represents a * node in a binary tree or `undefined` if there is no node. * @returns void, which means it does not return any value. */ protected _leftRotate(x: NODE | undefined): void { if (!x || !x.right) { return; } const y = x.right; x.right = y.left; if (this.isRealNode(y.left)) { y.left.parent = x; } y.parent = x.parent; if (!x.parent) { this._setRoot(y); } else if (x === x.parent.left) { x.parent.left = y; } else { x.parent.right = y; } y.left = x; x.parent = y; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_rightRotate` function performs a right rotation on a given node in a binary tree. * @param {NODE | undefined} y - The parameter `y` is of type `NODE | undefined`. It represents a * node in a binary tree or `undefined` if there is no node. * @returns void, which means it does not return any value. */ protected _rightRotate(y: NODE | undefined): void { if (!y || !y.left) { return; } const x = y.left; y.left = x.right; if (this.isRealNode(x.right)) { x.right.parent = y; } x.parent = y.parent; if (!y.parent) { this._setRoot(x); } else if (y === y.parent.left) { y.parent.left = x; } else { y.parent.right = x; } x.right = y; y.parent = x; } }