UNPKG

heap-typed

Version:

Heap. Javascript & Typescript Data Structure.

338 lines (337 loc) 21.4 kB
/** * data-structure-typed * * @author Pablo Zeng * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com> * @license MIT License */ import type { BSTNested, BSTNodeNested, BSTNOptKeyOrNode, BSTOptions, BTNRep, Comparator, CP, DFSOrderPattern, IterationType, NodeCallback, NodePredicate, OptNode } from '../../types'; import { BinaryTree, BinaryTreeNode } from './binary-tree'; import { IBinaryTree } from '../../interfaces'; export declare class BSTNode<K = any, V = any, NODE extends BSTNode<K, V, NODE> = BSTNodeNested<K, V>> extends BinaryTreeNode<K, V, NODE> { parent?: NODE; constructor(key: K, value?: V); protected _left?: NODE; /** * The function returns the value of the `_left` property. * @returns The `_left` property of the current object is being returned. */ get left(): OptNode<NODE>; /** * The function sets the left child of a node and updates the parent reference of the child. * @param {OptNode<NODE>} v - The parameter `v` is of type `OptNode<NODE>`. It can either be an * instance of the `NODE` class or `undefined`. */ set left(v: OptNode<NODE>); protected _right?: NODE; /** * The function returns the right node of a binary tree or undefined if there is no right node. * @returns The method is returning the value of the `_right` property, which is of type `NODE` or * `undefined`. */ get right(): OptNode<NODE>; /** * The function sets the right child of a node and updates the parent reference of the child. * @param {OptNode<NODE>} v - The parameter `v` is of type `OptNode<NODE>`. It can either be a * `NODE` object or `undefined`. */ set right(v: OptNode<NODE>); } /** * 1. Node Order: Each node's left child has a lesser value, and the right child has a greater value. * 2. Unique Keys: No duplicate keys in a standard BST. * 3. Efficient Search: Enables quick search, minimum, and maximum operations. * 4. Inorder Traversal: Yields nodes in ascending order. * 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient. * 6. Balance Variability: Can become unbalanced; special types maintain balance. * 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves. */ export declare class BST<K = any, V = any, R = object, NODE extends BSTNode<K, V, NODE> = BSTNode<K, V, BSTNodeNested<K, V>>, TREE extends BST<K, V, R, NODE, TREE> = BST<K, V, R, NODE, BSTNested<K, V, R, NODE>>> extends BinaryTree<K, V, R, NODE, TREE> implements IBinaryTree<K, V, R, NODE, TREE> { /** * This is the constructor function for a Binary Search Tree class in TypeScript. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter is an * iterable that can contain either keys, nodes, entries, or raw elements. These elements will be * added to the binary search tree during the construction of the object. * @param [options] - An optional object that contains additional options for the Binary Search Tree. * It can include a comparator function that defines the order of the elements in the tree. */ constructor(keysNodesEntriesOrRaws?: Iterable<R | BTNRep<K, V, NODE>>, options?: BSTOptions<K, V, R>); protected _root?: NODE; /** * The function returns the root node of a tree structure. * @returns The `_root` property of the object, which is of type `NODE` or `undefined`. */ get root(): OptNode<NODE>; /** * The function creates a new BSTNode with the given key and value and returns it. * @param {K} key - The key parameter is of type K, which represents the type of the key for the node * being created. * @param {V} [value] - The "value" parameter is an optional parameter of type V. It represents the * value associated with the key in the node being created. * @returns The method is returning a new instance of the BSTNode class, casted as the NODE type. */ createNode(key: K, value?: V): NODE; /** * The function creates a new binary search tree with the specified options. * @param [options] - The `options` parameter is an optional object that allows you to customize the * behavior of the `createTree` method. It accepts a partial `BSTOptions` object, which has the * following properties: * @returns a new instance of the BST class with the provided options. */ createTree(options?: BSTOptions<K, V, R>): TREE; /** * The function overrides a method and converts a key, value pair or entry or raw element to a node. * @param {BTNRep<K, V, NODE> | R} keyNodeEntryOrRaw - A variable that can be of * type R or BTNRep<K, V, NODE>. It represents either a key, a node, an entry, or a raw * element. * @param {V} [value] - The `value` parameter is an optional value of type `V`. It represents the * value associated with a key in a key-value pair. * @returns either a NODE object or undefined. */ keyValueNodeEntryRawToNodeAndValue(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R, value?: V): [OptNode<NODE>, V | undefined]; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function ensures the existence of a node in a data structure and returns it, or undefined if * it doesn't exist. * @param {BTNRep<K, V, NODE> | R} keyNodeEntryOrRaw - The parameter * `keyNodeEntryOrRaw` can accept a value of type `R`, which represents the key, node, * entry, or raw element that needs to be ensured in the tree. * @param {IterationType} [iterationType=ITERATIVE] - The `iterationType` parameter is an optional * parameter that specifies the type of iteration to be used when ensuring a node. It has a default * value of `'ITERATIVE'`. * @returns The method is returning either the node that was ensured or `undefined` if the node could * not be ensured. */ ensureNode(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R, iterationType?: IterationType): OptNode<NODE>; /** * The function checks if the input is an instance of the BSTNode class. * @param {BTNRep<K, V, NODE> | R} keyNodeEntryOrRaw - The parameter * `keyNodeEntryOrRaw` can be of type `R` or `BTNRep<K, V, NODE>`. * @returns a boolean value indicating whether the input parameter `keyNodeEntryOrRaw` is * an instance of the `BSTNode` class. */ isNode(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R): keyNodeEntryOrRaw is NODE; /** * The function "override isKey" checks if a key is comparable based on a given comparator. * @param {any} key - The `key` parameter is a value that will be checked to determine if it is of * type `K`. * @returns The `override isKey(key: any): key is K` function is returning a boolean value based on * the result of the `isComparable` function with the condition `this.comparator !== * this._DEFAULT_COMPARATOR`. */ isKey(key: any): key is K; /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The `add` function in TypeScript adds a new node to a binary search tree based on the key value. * @param {BTNRep<K, V, NODE> | R} keyNodeEntryOrRaw - The parameter * `keyNodeEntryOrRaw` can accept a value of type `R` or `BTNRep<K, V, NODE>`. * @param {V} [value] - The `value` parameter is an optional value that can be associated with the * key in the binary search tree. If provided, it will be stored in the node along with the key. * @returns a boolean value. */ add(keyNodeEntryOrRaw: BTNRep<K, V, NODE> | R, value?: V): boolean; /** * Time Complexity: O(k log n) * Space Complexity: O(k + log n) * * The `addMany` function in TypeScript adds multiple keys or nodes to a data structure and returns * an array indicating whether each key or node was successfully inserted. * @param keysNodesEntriesOrRaws - An iterable containing keys, nodes, entries, or raw * elements to be added to the data structure. * @param [values] - An optional iterable of values to be associated with the keys or nodes being * added. If provided, the values will be assigned to the corresponding keys or nodes in the same * order. If not provided, undefined will be assigned as the value for each key or node. * @param [isBalanceAdd=true] - A boolean flag indicating whether the tree should be balanced after * adding the elements. If set to true, the tree will be balanced using a binary search tree * algorithm. If set to false, the elements will be added without balancing the tree. The default * value is true. * @param {IterationType} iterationType - The `iterationType` parameter is an optional parameter that * specifies the type of iteration to use when adding multiple keys or nodes to the binary search * tree. It can have two possible values: * @returns The function `addMany` returns an array of booleans indicating whether each element was * successfully inserted into the data structure. */ addMany(keysNodesEntriesOrRaws: Iterable<R | BTNRep<K, V, NODE>>, values?: Iterable<V | undefined>, isBalanceAdd?: boolean, iterationType?: IterationType): boolean[]; /** * Time Complexity: O(log n) * Space Complexity: O(k + log n) * * The function `getNodes` in TypeScript overrides the base class method to retrieve nodes based on a * given keyNodeEntryRawOrPredicate and iteration type. * @param {BTNRep<K, V, NODE> | R | NodePredicate<NODE>} keyNodeEntryRawOrPredicate - The `keyNodeEntryRawOrPredicate` * parameter in the `getNodes` method is used to filter the nodes that will be returned. It can be a * key, a node, an entry, or a custom keyNodeEntryRawOrPredicate function that determines whether a node should be * included in the result. * @param [onlyOne=false] - The `onlyOne` parameter in the `getNodes` method is a boolean flag that * determines whether to return only the first node that matches the keyNodeEntryRawOrPredicate (`true`) or all nodes * that match the keyNodeEntryRawOrPredicate (`false`). If `onlyOne` is set to `true`, the method will stop iterating * and * @param {BTNRep<K, V, NODE> | R} startNode - The `startNode` parameter in the * `getNodes` method is used to specify the starting point for traversing the tree when searching for * nodes that match a given keyNodeEntryRawOrPredicate. It represents the root node of the subtree where the search * should begin. If not explicitly provided, the default value for `begin * @param {IterationType} iterationType - The `iterationType` parameter in the `getNodes` method * specifies the type of iteration to be performed when traversing the nodes of a binary tree. It can * have two possible values: * @returns The `getNodes` method returns an array of nodes that satisfy the given keyNodeEntryRawOrPredicate. */ getNodes(keyNodeEntryRawOrPredicate: BTNRep<K, V, NODE> | R | NodePredicate<NODE>, onlyOne?: boolean, startNode?: BTNRep<K, V, NODE> | R, iterationType?: IterationType): NODE[]; /** * Time Complexity: O(log n) * Space Complexity: O(1) * * This function retrieves a node based on a given keyNodeEntryRawOrPredicate within a binary search tree structure. * @param {BTNRep<K, V, NODE> | R | NodePredicate<NODE>} keyNodeEntryRawOrPredicate - The `keyNodeEntryRawOrPredicate` * parameter can be of type `BTNRep<K, V, NODE>`, `R`, or `NodePredicate<NODE>`. * @param {R | BSTNOptKeyOrNode<K, NODE>} startNode - The `startNode` parameter in the `getNode` method * is used to specify the starting point for searching nodes in the binary search tree. If no * specific starting point is provided, the default value is set to `this._root`, which is the root * node of the binary search tree. * @param {IterationType} iterationType - The `iterationType` parameter in the `getNode` method is a * parameter that specifies the type of iteration to be used. It has a default value of * `this.iterationType`, which means it will use the iteration type defined in the class instance if * no value is provided when calling the method. * @returns The `getNode` method is returning an optional binary search tree node (`OptNode<NODE>`). * It is using the `getNodes` method to find the node based on the provided keyNodeEntryRawOrPredicate, beginning at * the specified root node (`startNode`) and using the specified iteration type. The method then * returns the first node found or `undefined` if no node is found. */ getNode(keyNodeEntryRawOrPredicate: BTNRep<K, V, NODE> | R | NodePredicate<NODE>, startNode?: R | BSTNOptKeyOrNode<K, NODE>, iterationType?: IterationType): OptNode<NODE>; /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The function `getNodeByKey` returns a node with a specific key from a tree data structure. * @param {K} key - The key parameter is the value used to search for a specific node in the tree. It * is typically a unique identifier or a value that can be used to determine the position of the node * in the tree structure. * @param {IterationType} [iterationType=ITERATIVE] - The `iterationType` parameter is an optional * parameter that specifies the type of iteration to be used when searching for a node in the tree. * It has a default value of `'ITERATIVE'`. * @returns The method is returning a NODE object or undefined. */ getNodeByKey(key: K, iterationType?: IterationType): OptNode<NODE>; /** * Time complexity: O(n) * Space complexity: O(n) * * The function overrides the depth-first search method and returns an array of the return types of * the callback function. * @param {C} callback - The `callback` parameter is a function that will be called for each node * during the depth-first search traversal. It is an optional parameter and defaults to * `this._DEFAULT_NODE_CALLBACK`. The type `C` represents the type of the callback function. * @param {DFSOrderPattern} [pattern=IN] - The "pattern" parameter in the code snippet refers to the * order in which the Depth-First Search (DFS) algorithm visits the nodes in a tree or graph. It can * take one of the following values: * @param {BTNRep<K, V, NODE> | R} startNode - The `startNode` parameter is the starting * point for the depth-first search traversal. It can be either a root node, a key-value pair, or a * node entry. If not specified, the default value is the root of the tree. * @param {IterationType} [iterationType=ITERATIVE] - The `iterationType` parameter specifies the * type of iteration to be used during the Depth-First Search (DFS) traversal. It can have one of the * following values: * @returns The method is returning an array of the return type of the callback function. */ dfs<C extends NodeCallback<NODE>>(callback?: C, pattern?: DFSOrderPattern, startNode?: BTNRep<K, V, NODE> | R, iterationType?: IterationType): ReturnType<C>[]; /** * Time complexity: O(n) * Space complexity: O(n) * * The function overrides the breadth-first search method and returns an array of the return types of * the callback function. * @param {C} callback - The `callback` parameter is a function that will be called for each node * visited during the breadth-first search. It should take a single argument, which is the current * node being visited, and it can return a value of any type. * @param {BTNRep<K, V, NODE> | R} startNode - The `startNode` parameter is the starting * point for the breadth-first search. It can be either a root node, a key-value pair, or an entry * object. If no value is provided, the default value is the root of the tree. * @param {IterationType} iterationType - The `iterationType` parameter is used to specify the type * of iteration to be performed during the breadth-first search (BFS) traversal. It can have one of * the following values: * @returns an array of the return type of the callback function. */ bfs<C extends NodeCallback<NODE>>(callback?: C, startNode?: BTNRep<K, V, NODE> | R, iterationType?: IterationType): ReturnType<C>[]; /** * Time complexity: O(n) * Space complexity: O(n) * * The function overrides the listLevels method from the superclass and returns an array of arrays * containing the results of the callback function applied to each level of the tree. * @param {C} callback - The `callback` parameter is a generic type `C` that extends * `NodeCallback<NODE>`. It represents a callback function that will be called for each node in the * tree during the iteration process. * @param {BTNRep<K, V, NODE> | R} startNode - The `startNode` parameter is the starting * point for listing the levels of the binary tree. It can be either a root node of the tree, a * key-value pair representing a node in the tree, or a key representing a node in the tree. If no * value is provided, the root of * @param {IterationType} iterationType - The `iterationType` parameter is used to specify the type * of iteration to be performed on the tree. It can have one of the following values: * @returns The method is returning a two-dimensional array of the return type of the callback * function. */ listLevels<C extends NodeCallback<NODE>>(callback?: C, startNode?: BTNRep<K, V, NODE> | R, iterationType?: IterationType): ReturnType<C>[][]; /** * Time complexity: O(n) * Space complexity: O(n) * * The `lesserOrGreaterTraverse` function traverses a binary tree and applies a callback function to * each node that meets a certain condition based on a target node and a comparison value. * @param {C} callback - The `callback` parameter is a function that will be called for each node * that meets the condition specified by the `lesserOrGreater` parameter. It takes a single argument, * which is the current node being traversed, and returns a value of any type. * @param {CP} lesserOrGreater - The `lesserOrGreater` parameter is used to determine whether to * traverse nodes that are lesser, greater, or both than the `targetNode`. It accepts the values -1, * 0, or 1, where: * @param {BTNRep<K, V, NODE> | R} targetNode - The `targetNode` parameter is the node in * the binary tree that you want to start traversing from. It can be specified either by providing * the key of the node, the node itself, or an entry containing the key and value of the node. If no * `targetNode` is provided, * @param {IterationType} iterationType - The `iterationType` parameter determines the type of * traversal to be performed on the binary tree. It can have two possible values: * @returns The function `lesserOrGreaterTraverse` returns an array of values of type * `ReturnType<C>`, which is the return type of the callback function passed as an argument. */ lesserOrGreaterTraverse<C extends NodeCallback<NODE>>(callback?: C, lesserOrGreater?: CP, targetNode?: BTNRep<K, V, NODE> | R, iterationType?: IterationType): ReturnType<C>[]; /** * Time complexity: O(n) * Space complexity: O(n) * * The `perfectlyBalance` function takes an optional `iterationType` parameter and returns `true` if * the binary search tree is perfectly balanced, otherwise it returns `false`. * @param {IterationType} iterationType - The `iterationType` parameter is an optional parameter that * specifies the type of iteration to use when building a balanced binary search tree. It has a * default value of `this.iterationType`, which means it will use the iteration type specified in the * current instance of the class. * @returns The function `perfectlyBalance` returns a boolean value. */ perfectlyBalance(iterationType?: IterationType): boolean; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The function `isAVLBalanced` checks if a binary tree is AVL balanced using either a recursive or * iterative approach. * @param {IterationType} iterationType - The `iterationType` parameter is an optional parameter that * specifies the type of iteration to use when checking if the AVL tree is balanced. It has a default * value of `this.iterationType`, which means it will use the iteration type specified in the current * instance of the AVL tree. * @returns a boolean value. */ isAVLBalanced(iterationType?: IterationType): boolean; protected _DEFAULT_COMPARATOR: (a: K, b: K) => number; protected _comparator: Comparator<K>; /** * The function returns the value of the _comparator property. * @returns The `_comparator` property is being returned. */ get comparator(): Comparator<K>; /** * The function sets the root of a tree-like structure and updates the parent property of the new * root. * @param {OptNode<NODE>} v - v is a parameter of type NODE or undefined. */ protected _setRoot(v: OptNode<NODE>): void; }