gradiatorjs
Version:
GradiatorJS is a lightweight, from-scratch autodiff engine and a neural network library written in typescript. Featuring a powerful automatic differentiation engine using a computation graph to enable backpropagation on dynamic network architectures. You
35 lines (30 loc) • 851 B
text/typescript
import { Val } from "./val.js";
export type LayerType = 'dense' | 'conv' | 'flatten' | 'maxpool';
export type ActivationType = 'relu' | 'sigmoid' | 'tanh' | 'softmax';
export interface MinMaxInfo {
minv: number;
maxv: number;
dv: number; // Range (maxv - minv)
}
export interface NetworkParams {
loss_fn: (Y_pred: Val, Y_true: Val) => Val,
l_rate: number,
epochs: number,
batch_size: number,
multiClass: boolean
}
export interface TrainingProgress{
epoch: number,
batch_idx: number,
loss: number,
accuracy: number,
iterTime: number,
visData: {
sampleX: Val;
sampleY_label: number;
layerOutputs: { Z: Val | null; A: Val | null; }[];
}
}
export interface Messenger {
postMessage(data: any, transfer?: Transferable[]): void;
}