gpt-tokenizer
Version:
A pure JavaScript implementation of a BPE tokenizer (Encoder/Decoder) for GPT-2 / GPT-3 / GPT-4 and other OpenAI models
57 lines • 2.22 kB
JavaScript
// eslint-disable-next-line import/no-extraneous-dependencies
import { describe, expect, it } from 'vitest';
import { GptEncoding } from './GptEncoding.js';
import { resolveEncoding } from './resolveEncoding.js';
const sampleText = 'This is a test message.';
const sampleChat = [
{
role: 'system',
content: 'You are a helpful assistant.',
},
{
role: 'user',
content: 'Hello, how are you?',
},
{
role: 'assistant',
content: 'I am doing well, thank you for asking.',
},
];
describe('countTokens', () => {
const encoding = GptEncoding.getEncodingApiForModel('gpt-3.5-turbo', resolveEncoding);
describe('text input', () => {
it('counts tokens in empty string', () => {
expect(encoding.countTokens('')).toBe(0);
});
it('counts tokens in simple text', () => {
expect(encoding.countTokens(sampleText)).toBe(encoding.encode(sampleText).length);
});
it('counts tokens in text with special characters', () => {
const textWithSpecial = 'Hello 👋 world! 🌍';
expect(encoding.countTokens(textWithSpecial)).toBe(encoding.encode(textWithSpecial).length);
});
});
describe('chat input', () => {
it('counts tokens in empty chat', () => {
expect(encoding.countTokens([])).toBe(3); // Due to assistant prompt tokens
});
it('counts tokens in sample chat', () => {
expect(encoding.countTokens(sampleChat)).toBe(encoding.encodeChat(sampleChat).length);
});
it('matches token counts from encode methods', () => {
const tokens = encoding.encodeChat(sampleChat);
const count = encoding.countTokens(sampleChat);
expect(count).toBe(tokens.length);
});
it('counts tokens in single message chat', () => {
const singleMessage = [
{
role: 'user',
content: 'Hello world',
},
];
expect(encoding.countTokens(singleMessage)).toBe(encoding.encodeChat(singleMessage).length);
});
});
});
//# sourceMappingURL=extraApis.test.js.map