UNPKG

gojs

Version:

Interactive diagrams, charts, and graphs, such as trees, flowcharts, orgcharts, UML, BPMN, or business diagrams

608 lines (604 loc) 27.4 kB
/* * Copyright (C) 1998-2023 by Northwoods Software Corporation. All Rights Reserved. */ var __extends = (this && this.__extends) || (function () { var extendStatics = function (d, b) { extendStatics = Object.setPrototypeOf || ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) || function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; }; return extendStatics(d, b); }; return function (d, b) { if (typeof b !== "function" && b !== null) throw new TypeError("Class extends value " + String(b) + " is not a constructor or null"); extendStatics(d, b); function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; })(); (function (factory) { if (typeof module === "object" && typeof module.exports === "object") { var v = factory(require, exports); if (v !== undefined) module.exports = v; } else if (typeof define === "function" && define.amd) { define(["require", "exports", "../release/go.js"], factory); } })(function (require, exports) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.SwimLaneLayout = void 0; /* * This is an extension and not part of the main GoJS library. * Note that the API for this class may change with any version, even point releases. * If you intend to use an extension in production, you should copy the code to your own source directory. * Extensions can be found in the GoJS kit under the extensions or extensionsJSM folders. * See the Extensions intro page (https://gojs.net/latest/intro/extensions.html) for more information. */ var go = require("../release/go.js"); /** * A custom LayeredDigraphLayout that knows about "lanes" * and that positions each node in its respective lane. * This assumes that each Node.data.lane property is a string that names the lane the node should be in. * You can set the {@link #laneProperty} property to use a different data property name. * It is commonplace to set this property to be the same as the {@link GraphLinksModel#nodeGroupKeyProperty}, * so that the one property indicates that a particular node data is a member of a particular group * and thus that that group represents a lane. * The lanes can be sorted by specifying the {@link #laneComparer} function. * You can add extra space between the lanes by increasing {@link #laneSpacing} from its default of zero. * That number's unit is columns, {@link LayeredDigraphLayout#columnSpacing}, not in document coordinates. * @category Layout Extension */ var SwimLaneLayout = /** @class */ (function (_super) { __extends(SwimLaneLayout, _super); /** @hidden */ function SwimLaneLayout(init) { var _this = _super.call(this, init) || this; // settable properties _this._laneProperty = "lane"; // how to get lane identifier string from node data _this._laneNames = []; // lane names, may be sorted using this.laneComparer _this._laneComparer = null; _this._laneSpacing = 0; // in columns _this._router = { linkSpacing: 4 }; _this._reducer = null; // computed, read-only state _this._lanePositions = new go.Map(); // lane names --> start columns, left to right _this._laneBreadths = new go.Map(); // lane names --> needed width in columns // internal state _this._layers = [[]]; _this._neededSpaces = []; _this.alignOption = go.LayeredDigraphLayout.AlignAll; return _this; } Object.defineProperty(SwimLaneLayout.prototype, "laneProperty", { /** * Gets or sets the name of the data property that holds the string which is the name of the lane that the node should be in. * The default value is "lane". */ get: function () { return this._laneProperty; }, set: function (val) { if (typeof val !== 'string' && typeof val !== 'function') throw new Error("new value for SwimLaneLayout.laneProperty must be a property name, not: " + val); if (this._laneProperty !== val) { this._laneProperty = val; this.invalidateLayout(); } }, enumerable: false, configurable: true }); Object.defineProperty(SwimLaneLayout.prototype, "laneNames", { /** * Gets or sets an Array of lane names. * If you set this before a layout happens, it will use those lanes in that order. * Any additional lane names that it discovers will be added to the end of this Array. * * This property is reset to an empty Array at the end of each layout. * The default value is an empty Array. */ get: function () { return this._laneNames; }, set: function (val) { if (!Array.isArray(val)) throw new Error("new value for SwimLaneLayout.laneNames must be an Array, not: " + val); if (this._laneNames !== val) { this._laneNames = val; this.invalidateLayout(); } }, enumerable: false, configurable: true }); Object.defineProperty(SwimLaneLayout.prototype, "laneComparer", { /** * Gets or sets a function by which to compare lane names, for ordering the lanes within the {@link #laneNames} Array. * By default the function is null -- the lanes are not sorted. */ get: function () { return this._laneComparer; }, set: function (val) { if (typeof val !== 'function') throw new Error("new value for SwimLaneLayout.laneComparer must be a function, not: " + val); if (this._laneComparer !== val) { this._laneComparer = val; this.invalidateLayout(); } }, enumerable: false, configurable: true }); Object.defineProperty(SwimLaneLayout.prototype, "laneSpacing", { /** * Gets or sets the amount of additional space it allocates between the lanes. * This number specifies the number of columns, with the same meaning as {@link LayeredDigraphLayout#columnSpacing}. * The number unit is not in document coordinate or pixels. * The default value is zero columns. */ get: function () { return this._laneSpacing; }, set: function (val) { if (typeof val !== 'number') throw new Error("new value for SwimLaneLayout.laneSpacing must be a number, not: " + val); if (this._laneSpacing !== val) { this._laneSpacing = val; this.invalidateLayout(); } }, enumerable: false, configurable: true }); Object.defineProperty(SwimLaneLayout.prototype, "router", { /** * @hidden */ get: function () { return this._router; }, set: function (val) { if (this._router !== val) { this._router = val; this.invalidateLayout(); } }, enumerable: false, configurable: true }); Object.defineProperty(SwimLaneLayout.prototype, "reducer", { /** * @hidden */ get: function () { return this._reducer; }, set: function (val) { if (this._reducer !== val) { this._reducer = val; if (val) { var lay_1 = this; val.findLane = function (v) { return lay_1.getLane(v); }; val.getIndex = function (v) { return v.index; }; val.getBary = function (v) { return v.bary || 0; }; val.setBary = function (v, val) { v.bary = val; }; val.getConnectedNodesIterator = function (v) { return v.vertexes; }; } this.invalidateLayout(); } }, enumerable: false, configurable: true }); Object.defineProperty(SwimLaneLayout.prototype, "lanePositions", { /** * The computed positions of each lane, * in the form of a {@link Map} mapping lane names (strings) to numbers. */ get: function () { return this._lanePositions; }, enumerable: false, configurable: true }); Object.defineProperty(SwimLaneLayout.prototype, "laneBreadths", { /** * The computed breadths (widths or heights depending on the direction) of each lane, * in the form of a {@link Map} mapping lane names (strings) to numbers. */ get: function () { return this._laneBreadths; }, enumerable: false, configurable: true }); /** * @hidden * @param coll */ SwimLaneLayout.prototype.doLayout = function (coll) { this.lanePositions.clear(); // lane names --> start columns, left to right this.laneBreadths.clear(); // lane names --> needed width in columns this._layers = [[]]; this._neededSpaces = []; _super.prototype.doLayout.call(this, coll); this.lanePositions.clear(); this.laneBreadths.clear(); this._layers = [[]]; this._neededSpaces = []; }; /** * @hidden * @param v * @param topleft */ SwimLaneLayout.prototype.nodeMinLayerSpace = function (v, topleft) { if (!this._neededSpaces) this._neededSpaces = this.computeNeededLayerSpaces(this.network); if (v.node === null) return 0; var lay = v.layer; if (!topleft) { if (lay > 0) lay--; } var overlaps = (this._neededSpaces[lay] || 0) / 2; var edges = this.countEdgesForDirection(v, (this.direction > 135) ? !topleft : topleft); var needed = Math.max(overlaps, edges) * this.router.linkSpacing * 1.5; if (this.direction === 90 || this.direction === 270) { if (topleft) { return v.focus.y + 10 + needed; } else { return v.bounds.height - v.focus.y + 10 + needed; } } else { if (topleft) { return v.focus.x + 10 + needed; } else { return v.bounds.width - v.focus.x + 10 + needed; } } }; SwimLaneLayout.prototype.countEdgesForDirection = function (vertex, topleft) { var c = 0; var lay = vertex.layer; vertex.edges.each(function (e) { if (topleft) { if (e.getOtherVertex(vertex).layer >= lay) c++; } else { if (e.getOtherVertex(vertex).layer <= lay) c++; } }); return c; }; SwimLaneLayout.prototype.computeNeededLayerSpaces = function (net) { // group all edges by their connected vertexes' least layer var layerMinEdges = []; net.edges.each(function (e) { // consider all edges, including dummy ones! var f = e.fromVertex; var t = e.toVertex; if (f.column === t.column) return; // skip edges that don't go between columns if (Math.abs(f.layer - t.layer) > 1) return; // skip edges that don't go between adjacent layers var lay = Math.min(f.layer, t.layer); var arr = layerMinEdges[lay]; if (!arr) arr = layerMinEdges[lay] = []; arr.push(e); }); // sort each array of edges by their lowest connected vertex column // for edges with the same minimum column, sort by their maximum column var layerMaxEdges = []; // same as layerMinEdges, but sorted by maximum column layerMinEdges.forEach(function (arr, lay) { if (!arr) return; arr.sort(function (e1, e2) { var f1c = e1.fromVertex.column; var t1c = e1.toVertex.column; var f2c = e2.fromVertex.column; var t2c = e2.toVertex.column; var e1mincol = Math.min(f1c, t1c); var e2mincol = Math.min(f2c, t2c); if (e1mincol > e2mincol) return 1; if (e1mincol < e2mincol) return -1; var e1maxcol = Math.max(f1c, t1c); var e2maxcol = Math.max(f2c, t2c); if (e1maxcol > e2maxcol) return 1; if (e1maxcol < e2maxcol) return -1; return 0; }); layerMaxEdges[lay] = arr.slice(0); layerMaxEdges[lay].sort(function (e1, e2) { var f1c = e1.fromVertex.column; var t1c = e1.toVertex.column; var f2c = e2.fromVertex.column; var t2c = e2.toVertex.column; var e1maxcol = Math.max(f1c, t1c); var e2maxcol = Math.max(f2c, t2c); if (e1maxcol > e2maxcol) return 1; if (e1maxcol < e2maxcol) return -1; var e1mincol = Math.min(f1c, t1c); var e2mincol = Math.min(f2c, t2c); if (e1mincol > e2mincol) return 1; if (e1mincol < e2mincol) return -1; return 0; }); }); // run through each array of edges to count how many overlaps there might be var layerOverlaps = []; layerMinEdges.forEach(function (arr, lay) { var mins = arr; // sorted by min column var maxs = layerMaxEdges[lay]; // sorted by max column var maxoverlap = 0; // maximum count for this layer if (mins && maxs && mins.length > 1 && maxs.length > 1) { var mini = 0; var min = null; var maxi = 0; var max = null; while (mini < mins.length || maxi < maxs.length) { if (mini < mins.length) min = mins[mini]; var mincol = min ? Math.min(min.fromVertex.column, min.toVertex.column) : 0; if (maxi < maxs.length) max = maxs[maxi]; var maxcol = max ? Math.max(max.fromVertex.column, max.toVertex.column) : Infinity; maxoverlap = Math.max(maxoverlap, Math.abs(mini - maxi)); if (mincol <= maxcol && mini < mins.length) { mini++; } else if (maxi < maxs.length) { maxi++; } } } layerOverlaps[lay] = maxoverlap * 1.5; // # of parallel links }); return layerOverlaps; }; SwimLaneLayout.prototype.setupLanes = function () { // set up some data structures var layout = this; var laneNameSet = new go.Set().addAll(this.laneNames); var laneIndexes = new go.Map(); // lane names --> index when sorted var vit = this.network.vertexes.iterator; while (vit.next()) { var v = vit.value; var lane = this.getLane(v); // cannot call findLane yet if (lane !== null && !laneNameSet.has(lane)) { laneNameSet.add(lane); this.laneNames.push(lane); } var layer = v.layer; if (layer >= 0) { var arr = this._layers[layer]; if (!arr) { this._layers[layer] = [v]; } else { arr.push(v); } } } // sort laneNames and initialize laneIndexes if (typeof this.laneComparer === "function") this.laneNames.sort(this.laneComparer); for (var i = 0; i < this.laneNames.length; i++) { laneIndexes.add(this.laneNames[i], i); } // now OK to call findLane // sort vertexes so that vertexes are grouped by lane for (var i = 0; i <= this.maxLayer; i++) { this._layers[i].sort(function (a, b) { return layout.compareVertexes(a, b); }); } }; /** * @hidden * Replace the standard reduceCrossings behavior so that it respects lanes. */ SwimLaneLayout.prototype.reduceCrossings = function () { this.setupLanes(); // this just cares about the .index and ignores .column var layers = this._layers; var red = this.reducer; if (red) { for (var i = 0; i < layers.length - 1; i++) { red.reduceCrossings(layers[i], layers[i + 1]); layers[i].forEach(function (v, j) { v.index = j; }); } for (var i = layers.length - 1; i > 0; i--) { red.reduceCrossings(layers[i], layers[i - 1]); layers[i].forEach(function (v, j) { v.index = j; }); } } this.computeLanes(); // and recompute all vertex.column values }; SwimLaneLayout.prototype.computeLanes = function () { // compute needed width for each lane, in columns for (var i = 0; i < this.laneNames.length; i++) { var lane = this.laneNames[i]; this.laneBreadths.add(lane, this.computeMinLaneWidth(lane)); } var lwidths = new go.Map(); // reused for each layer var _loop_1 = function (i) { var arr = this_1._layers[i]; if (arr) { var layout_1 = this_1; // now run through Array finding width (in columns) of each lane // and max with this.laneBreadths.get(lane) for (var j = 0; j < arr.length; j++) { var v = arr[j]; var w = this_1.nodeMinColumnSpace(v, true) + 1 + this_1.nodeMinColumnSpace(v, false); var ln = this_1.findLane(v) || ""; var totw = lwidths.get(ln); if (totw === null) { lwidths.set(ln, w); } else { lwidths.set(ln, totw + w); } } lwidths.each(function (kvp) { var lane = kvp.key; var colsInLayer = kvp.value; var colsMax = layout_1.laneBreadths.get(lane) || 0; if (colsInLayer > colsMax) layout_1.laneBreadths.set(lane, colsInLayer); }); lwidths.clear(); } }; var this_1 = this; for (var i = 0; i <= this.maxLayer; i++) { _loop_1(i); } // compute starting positions for each lane var x = 0; for (var i = 0; i < this.laneNames.length; i++) { var lane = this.laneNames[i]; this.lanePositions.set(lane, x); var w = this.laneBreadths.get(lane) || 0; x += w + this.laneSpacing; } this.renormalizeColumns(); }; SwimLaneLayout.prototype.renormalizeColumns = function () { // set new column and index on each vertex for (var i = 0; i < this._layers.length; i++) { var prevlane = null; var c = 0; var arr = this._layers[i]; for (var j = 0; j < arr.length; j++) { var v = arr[j]; v.index = j; var l = this.findLane(v); if (l && prevlane !== l) { c = this.lanePositions.get(l) || 0; var w = this.laneBreadths.get(l) || 0; // compute needed breadth within lane, in columns var z = this.nodeMinColumnSpace(v, true) + 1 + this.nodeMinColumnSpace(v, false); var k = j + 1; while (k < arr.length && this.findLane(arr[k]) === l) { var vz = arr[k]; z += this.nodeMinColumnSpace(vz, true) + 1 + this.nodeMinColumnSpace(vz, false); k++; } // if there is extra space, shift the vertexes to the middle of the lane if (z < w) { c += Math.floor((w - z) / 2); } } c += this.nodeMinColumnSpace(v, true); v.column = c; c += 1; c += this.nodeMinColumnSpace(v, false); prevlane = l; } } }; /** * Return the minimum lane width, in columns * @param lane */ SwimLaneLayout.prototype.computeMinLaneWidth = function (lane) { return 0; }; /** * @hidden * Disable normal straightenAndPack behavior, which would mess up the columns. */ SwimLaneLayout.prototype.straightenAndPack = function () { }; /** * Given a vertex, get the lane (name) that its node belongs in. * If the lane appears to be undefined, this returns the empty string. * For dummy vertexes (with no node) this will return null. * @param v */ SwimLaneLayout.prototype.getLane = function (v) { if (v === null) return null; var node = v.node; if (node !== null) { var data = node.data; if (data !== null) { var lane = null; if (typeof this.laneProperty === "function") { lane = this.laneProperty(data); } else { lane = data[this.laneProperty]; } if (typeof lane === "string") return lane; return ""; // default lane } } return null; }; /** * This is just like {@link #getLane} but handles dummy vertexes * for which the {@link #getLane} returns null by returning the * lane of the edge's source or destination vertex. * This can only be called after the lanes have been set up internally. * @param v */ SwimLaneLayout.prototype.findLane = function (v) { if (v !== null) { var lane = this.getLane(v); if (lane !== null) { return lane; } else { var srcv = this.findRealSource(v.sourceEdges.first()); var dstv = this.findRealDestination(v.destinationEdges.first()); var srcLane = this.getLane(srcv); var dstLane = this.getLane(dstv); if (srcLane !== null || dstLane !== null) { if (srcLane === dstLane) return srcLane; if (srcLane !== null) return srcLane; if (dstLane !== null) return dstLane; } } } return null; }; SwimLaneLayout.prototype.findRealSource = function (e) { if (e === null) return null; var fv = e.fromVertex; if (fv && fv.node) return fv; return this.findRealSource(fv.sourceEdges.first()); }; SwimLaneLayout.prototype.findRealDestination = function (e) { if (e === null) return null; var tv = e.toVertex; if (tv.node) return tv; return this.findRealDestination(tv.destinationEdges.first()); }; SwimLaneLayout.prototype.compareVertexes = function (v, w) { var laneV = this.findLane(v); if (laneV === null) laneV = ""; var laneW = this.findLane(w); if (laneW === null) laneW = ""; if (laneV < laneW) return -1; if (laneV > laneW) return 1; if (v.column < w.column) return -1; if (v.column > w.column) return 1; return 0; }; ; return SwimLaneLayout; }(go.LayeredDigraphLayout)); exports.SwimLaneLayout = SwimLaneLayout; });