gojs
Version:
Interactive diagrams, charts, and graphs, such as trees, flowcharts, orgcharts, UML, BPMN, or business diagrams
482 lines (437 loc) • 16.4 kB
JavaScript
"use strict";
/*
* Copyright (C) 1998-2023 by Northwoods Software Corporation. All Rights Reserved.
*/
// A custom LayeredDigraphLayout that knows about "lanes"
// and that positions each node in its respective lane.
// This assumes that each Node.data.lane property is a string that names the lane the node should be in.
// You can set the SwimLaneLayout.laneProperty property to use a different data property name.
// It is commonplace to set this property to be the same as the GraphLinksModel.nodeGroupKeyProperty,
// so that the one property indicates that a particular node data is a member of a particular group
// and thus that that group represents a lane.
// The lanes can be sorted by specifying the SwimLaneLayout.laneComparer function.
// You can add extra space between the lanes by increasing SwimLaneLayout.laneSpacing from its default of zero.
// That number's unit is columns, LayeredDigraphLayout.columnSpacing, not in document coordinates.
function SwimLaneLayout() {
go.LayeredDigraphLayout.call(this);
this.alignOption = go.LayeredDigraphLayout.AlignAll;
// settable properties
this._laneProperty = "lane"; // how to get lane identifier string from node data
this._laneNames = [];
this._laneComparer = null;
this._laneSpacing = 0; // in columns
this._router = { linkSpacing: 4 };
this._reducer = null;
// computed, read-only state
this.lanePositions = new go.Map(); // lane names --> start columns, left to right
this.laneBreadths = new go.Map(); // lane names --> needed width in columns
// internal state
this._layers = null;
this._neededSpaces = null;
}
go.Diagram.inherit(SwimLaneLayout, go.LayeredDigraphLayout);
Object.defineProperty(SwimLaneLayout.prototype, "laneProperty", {
get: function() { return this._laneProperty; },
set: function(val) {
if (typeof val !== 'string' && typeof val !== 'function') throw new Error("new value for SwimLaneLayout.laneProperty must be a property name, not: " + val);
if (this._laneProperty !== val) {
this._laneProperty = val;
this.invalidateLayout();
}
}
});
Object.defineProperty(SwimLaneLayout.prototype, "laneNames", {
get: function() { return this._laneNames; },
set: function(val) {
if (!Array.isArray(val)) throw new Error("new value for SwimLaneLayout.laneNames must be an Array, not: " + val);
if (this._laneNames !== val) {
this._laneNames = val;
this.invalidateLayout();
}
}
});
Object.defineProperty(SwimLaneLayout.prototype, "laneComparer", {
get: function() { return this._laneComparer; },
set: function(val) {
if (typeof val !== 'function') throw new Error("new value for SwimLaneLayout.laneComparer must be a function, not: " + val);
if (this._laneComparer !== val) {
this._laneComparer = val;
this.invalidateLayout();
}
}
});
Object.defineProperty(SwimLaneLayout.prototype, "laneSpacing", { // unit is columns, not in document coordinates
get: function() { return this._laneSpacing; },
set: function(val) {
if (typeof val !== 'number') throw new Error("new value for SwimLaneLayout.laneSpacing must be a number, not: " + val);
if (this._laneSpacing !== val) {
this._laneSpacing = val;
this.invalidateLayout();
}
}
});
Object.defineProperty(SwimLaneLayout.prototype, "router", {
get: function() { return this._router; },
set: function(val) {
if (this._router !== val) {
this._router = val;
this.invalidateLayout();
}
}
});
Object.defineProperty(SwimLaneLayout.prototype, "reducer", {
get: function() { return this._reducer; },
set: function(val) {
if (this._reducer !== val) {
this._reducer = val;
if (val) {
var lay = this;
val.findLane = function(v) { return lay.getLane(v); }
val.getIndex = function(v) { return v.index; }
val.getBary = function(v) { return v.bary || 0; }
val.setBary = function(v, val) { v.bary = val; }
val.getConnectedNodesIterator = function(v) { return v.vertexes; }
}
this.invalidateLayout();
}
}
});
SwimLaneLayout.prototype.doLayout = function(coll) {
this.lanePositions.clear(); // lane names --> start columns, left to right
this.laneBreadths.clear(); // lane names --> needed width in columns
this._layers = null;
this._neededSpaces = null;
go.LayeredDigraphLayout.prototype.doLayout.call(this, coll);
this.lanePositions.clear();
this.laneBreadths.clear();
this._layers = null;
this._neededSpaces = null;
}
SwimLaneLayout.prototype.nodeMinLayerSpace = function(v, topleft) {
if (!this._neededSpaces) this._neededSpaces = this.computeNeededLayerSpaces(this.network);
if (v.node === null) return 0;
var lay = v.layer;
if (!topleft) {
if (lay > 0) lay--;
}
var overlaps = (this._neededSpaces[lay] || 0)/2;
var edges = this.countEdgesForDirection(v, (this.direction > 135) ? !topleft : topleft);
var needed = Math.max(overlaps, edges) * this.router.linkSpacing * 1.5;
if (this.direction === 90 || this.direction === 270) {
if (topleft) {
return v.focus.y + 10 + needed;
} else {
return v.bounds.height - v.focus.y + 10 + needed;
}
} else {
if (topleft) {
return v.focus.x + 10 + needed;
} else {
return v.bounds.width - v.focus.x + 10 + needed;
}
}
}
SwimLaneLayout.prototype.countEdgesForDirection = function(vertex, topleft) {
var c = 0;
var lay = vertex.layer;
vertex.edges.each(function(e) {
if (topleft) {
if (e.getOtherVertex(vertex).layer >= lay) c++;
} else {
if (e.getOtherVertex(vertex).layer <= lay) c++;
}
});
return c;
}
SwimLaneLayout.prototype.computeNeededLayerSpaces = function(net) {
// group all edges by their connected vertexes' least layer
var layerMinEdges = [];
net.edges.each(function(e) {
// consider all edges, including dummy ones!
var f = e.fromVertex;
var t = e.toVertex;
if (f.column === t.column) return; // skip edges that don't go between columns
if (Math.abs(f.layer-t.layer) > 1) return; // skip edges that don't go between adjacent layers
var lay = Math.min(f.layer, t.layer);
var arr = layerMinEdges[lay];
if (!arr) arr = layerMinEdges[lay] = [];
arr.push(e);
});
// sort each array of edges by their lowest connected vertex column
// for edges with the same minimum column, sort by their maximum column
var layerMaxEdges = []; // same as layerMinEdges, but sorted by maximum column
layerMinEdges.forEach(function(arr, lay) {
if (!arr) return;
arr.sort(function(e1, e2) {
var f1c = e1.fromVertex.column;
var t1c = e1.toVertex.column;
var f2c = e2.fromVertex.column;
var t2c = e2.toVertex.column;
var e1mincol = Math.min(f1c, t1c);
var e2mincol = Math.min(f2c, t2c);
if (e1mincol > e2mincol) return 1;
if (e1mincol < e2mincol) return -1;
var e1maxcol = Math.max(f1c, t1c);
var e2maxcol = Math.max(f2c, t2c);
if (e1maxcol > e2maxcol) return 1;
if (e1maxcol < e2maxcol) return -1;
return 0;
});
layerMaxEdges[lay] = arr.slice(0);
layerMaxEdges[lay].sort(function(e1, e2) {
var f1c = e1.fromVertex.column;
var t1c = e1.toVertex.column;
var f2c = e2.fromVertex.column;
var t2c = e2.toVertex.column;
var e1maxcol = Math.max(f1c, t1c);
var e2maxcol = Math.max(f2c, t2c);
if (e1maxcol > e2maxcol) return 1;
if (e1maxcol < e2maxcol) return -1;
var e1mincol = Math.min(f1c, t1c);
var e2mincol = Math.min(f2c, t2c);
if (e1mincol > e2mincol) return 1;
if (e1mincol < e2mincol) return -1;
return 0;
});
});
// run through each array of edges to count how many overlaps there might be
var layerOverlaps = [];
layerMinEdges.forEach(function(arr, lay) {
var mins = arr; // sorted by min column
var maxs = layerMaxEdges[lay]; // sorted by max column
var maxoverlap = 0; // maximum count for this layer
if (mins && maxs && mins.length > 1 && maxs.length > 1) {
var mini = 0;
var min = null;
var maxi = 0;
var max = null;
while (mini < mins.length || maxi < maxs.length) {
if (mini < mins.length) min = mins[mini];
var mincol = min ? Math.min(min.fromVertex.column, min.toVertex.column) : 0;
if (maxi < maxs.length) max = maxs[maxi];
var maxcol = max ? Math.max(max.fromVertex.column, max.toVertex.column) : Infinity;
maxoverlap = Math.max(maxoverlap, Math.abs(mini-maxi));
if (mincol <= maxcol && mini < mins.length) {
mini++;
} else if (maxi < maxs.length) {
maxi++;
}
}
}
layerOverlaps[lay] = maxoverlap * 1.5; // # of parallel links
});
return layerOverlaps;
}
SwimLaneLayout.prototype.setupLanes = function() {
// set up some data structures
var layout = this;
var laneNameSet = new go.Set().addAll(this.laneNames);
var laneIndexes = new go.Map(); // lane names --> index when sorted
var layers = [];
this._layers = layers;
var vit = this.network.vertexes.iterator;
while (vit.next()) {
var v = vit.value;
var lane = this.getLane(v); // cannot call findLane yet
if (lane !== null && !laneNameSet.has(lane)) {
laneNameSet.add(lane);
this.laneNames.push(lane);
}
var layer = v.layer;
if (layer >= 0) {
var arr = layers[layer];
if (!arr) {
layers[layer] = [v];
} else {
arr.push(v);
}
}
}
// sort laneNames and initialize laneIndexes
if (typeof laneComparer === "function") this.laneNames.sort(laneComparer);
for (var i = 0; i < this.laneNames.length; i++) {
laneIndexes.add(this.laneNames[i], i);
}
// now OK to call findLane
// sort vertexes so that vertexes are grouped by lane
for (var i = 0; i <= this.maxLayer; i++) {
layers[i].sort(function(a, b) { return layout.compareVertexes(a, b); });
}
}
/**
* Replace the standard reduceCrossings behavior so that it respects lanes.
*/
SwimLaneLayout.prototype.reduceCrossings = function() {
this.setupLanes();
// this just cares about the .index and ignores .column
var layers = this._layers;
var red = this.reducer;
if (red) {
for (var i = 0; i < layers.length-1; i++) {
red.reduceCrossings(layers[i], layers[i+1]);
layers[i].forEach(function(v, j) { v.index = j; })
}
for (var i = layers.length-1; i > 0; i--) {
red.reduceCrossings(layers[i], layers[i-1]);
layers[i].forEach(function(v, j) { v.index = j; })
}
}
this.computeLanes(); // and recompute all vertex.column values
}
SwimLaneLayout.prototype.computeLanes = function() {
// compute needed width for each lane, in columns
for (var i = 0; i < this.laneNames.length; i++) {
var lane = this.laneNames[i];
this.laneBreadths.add(lane, this.computeMinLaneWidth(lane));
}
var lwidths = new go.Map(); // reused for each layer
for (var i = 0; i <= this.maxLayer; i++) {
var arr = this._layers[i];
if (arr) {
var layout = this;
// now run through Array finding width (in columns) of each lane
// and max with this.laneBreadths.get(lane)
for (var j = 0; j < arr.length; j++) {
var v = arr[j];
var w = this.nodeMinColumnSpace(v, true) + 1 + this.nodeMinColumnSpace(v, false);
var ln = this.findLane(v);
var totw = lwidths.get(ln)
if (totw === null) {
lwidths.set(ln, w);
} else {
lwidths.set(ln, totw + w);
}
}
lwidths.each(function(kvp) {
var lane = kvp.key;
var colsInLayer = kvp.value;
var colsMax = layout.laneBreadths.get(lane);
if (colsInLayer > colsMax) layout.laneBreadths.set(lane, colsInLayer);
})
lwidths.clear();
}
}
// compute starting positions for each lane
var x = 0;
for (var i = 0; i < this.laneNames.length; i++) {
var lane = this.laneNames[i];
this.lanePositions.set(lane, x);
var w = this.laneBreadths.get(lane);
x += w + this.laneSpacing;
}
this.renormalizeColumns();
}
SwimLaneLayout.prototype.renormalizeColumns = function() {
// set new column and index on each vertex
for (var i = 0; i < this._layers.length; i++) {
var prevlane = null;
var c = 0;
var arr = this._layers[i];
for (var j = 0; j < arr.length; j++) {
var v = arr[j];
v.index = j;
var l = this.findLane(v);
if (prevlane !== l) {
c = this.lanePositions.get(l);
var w = this.laneBreadths.get(l);
// compute needed breadth within lane, in columns
var z = this.nodeMinColumnSpace(v, true) + 1 + this.nodeMinColumnSpace(v, false);
var k = j+1;
while (k < arr.length && this.findLane(arr[k]) === l) {
var vz = arr[k];
z += this.nodeMinColumnSpace(vz, true) + 1 + this.nodeMinColumnSpace(vz, false);
k++;
}
// if there is extra space, shift the vertexes to the middle of the lane
if (z < w) {
c += Math.floor((w-z)/2);
}
}
c += this.nodeMinColumnSpace(v, true);
v.column = c;
c += 1;
c += this.nodeMinColumnSpace(v, false);
prevlane = l;
}
}
}
/**
* Return the minimum lane width, in columns
* @param lane
*/
SwimLaneLayout.prototype.computeMinLaneWidth = function(lane) { return 0; }
/**
* Disable normal straightenAndPack behavior, which would mess up the columns.
*/
SwimLaneLayout.prototype.straightenAndPack = function() {}
/**
* Given a vertex, get the lane (name) that its node belongs in.
* If the lane appears to be undefined, this returns the empty string.
* For dummy vertexes (with no node) this will return null.
* @param v
*/
SwimLaneLayout.prototype.getLane = function(v) {
if (v === null) return null;
var node = v.node;
if (node !== null) {
var data = node.data;
if (data !== null) {
var lane = null;
if (typeof this.laneProperty === "function") {
lane = this.laneProperty(data);
} else {
lane = data[this.laneProperty];
}
if (typeof lane === "string") return lane;
return "";
}
}
return null;
}
/**
* This is just like {@link #getLane} but handles dummy vertexes
* for which the {@link #getLane} returns null by returning the
* lane of the edge's source or destination vertex.
* This can only be called after the lanes have been set up internally.
* @param v
*/
SwimLaneLayout.prototype.findLane = function(v) {
if (v !== null) {
var lane = this.getLane(v);
if (lane !== null) {
return lane;
} else {
var srcv = this.findRealSource(v.sourceEdges.first());
var dstv = this.findRealDestination(v.destinationEdges.first());
var srcLane = this.getLane(srcv);
var dstLane = this.getLane(dstv);
if (srcLane !== null || dstLane !== null) {
if (srcLane === dstLane) return srcLane;
if (srcLane !== null) return srcLane;
if (dstLane !== null) return dstLane;
}
}
}
return null;
}
SwimLaneLayout.prototype.findRealSource = function(e) {
if (e === null) return null;
if (e.fromVertex.node) return e.fromVertex;
return this.findRealSource(e.fromVertex.sourceEdges.first());
}
SwimLaneLayout.prototype.findRealDestination = function(e) {
if (e === null) return null;
if (e.toVertex.node) return e.toVertex;
return this.findRealDestination(e.toVertex.destinationEdges.first());
}
SwimLaneLayout.prototype.compareVertexes = function(v, w) {
var laneV = this.findLane(v);
if (laneV === null) laneV = "";
var laneW = this.findLane(w);
if (laneW === null) laneW = "";
if (laneV < laneW) return -1;
if (laneV > laneW) return 1;
if (v.column < w.column) return -1;
if (v.column > w.column) return 1;
return 0;
};