UNPKG

gojs

Version:

Interactive diagrams, charts, and graphs, such as trees, flowcharts, orgcharts, UML, BPMN, or business diagrams

367 lines (332 loc) 12 kB
"use strict"; /* * Copyright (C) 1998-2023 by Northwoods Software Corporation. All Rights Reserved. */ /* * This is an extension and not part of the main GoJS library. * Note that the API for this class may change with any version, even point releases. * If you intend to use an extension in production, you should copy the code to your own source directory. * Extensions can be found in the GoJS kit under the extensions or extensionsJSM folders. * See the Extensions intro page (https://gojs.net/latest/intro/extensions.html) for more information. */ /** * @constructor * @extends Layout * @class * Given a root Node this arranges connected nodes in concentric rings, * layered by the minimum link distance from the root. */ function RadialLayout() { go.Layout.call(this); this._root = null; this._layerThickness = 100; // how thick each ring should be this._maxLayers = Infinity; } go.Diagram.inherit(RadialLayout, go.Layout); /** * @ignore * Copies properties to a cloned Layout. * @this {RadialLayout} * @param {Layout} copy */ RadialLayout.prototype.cloneProtected = function(copy) { go.Layout.prototype.cloneProtected.call(this, copy); // don't copy .root copy._layerThickness = this._layerThickness; copy._maxLayers = this._maxLayers; }; /* * The Node to act as the root or central node of the radial layout. * @name RadialLayout#root * @return {Node} */ Object.defineProperty(RadialLayout.prototype, "root", { get: function() { return this._root; }, set: function(value) { if (this._root !== value) { this._root = value; this.invalidateLayout(); } } }); /* * The thickness of each ring representing a layer. * @name RadialLayout#layerThickness * @return {number} */ Object.defineProperty(RadialLayout.prototype, "layerThickness", { get: function() { return this._layerThickness; }, set: function(value) { if (this._layerThickness !== value) { this._layerThickness = value; this.invalidateLayout(); } } }); /* * The maximum number of layers to be shown, in addition to the root node at layer zero. * The default value is Infinity. * @name RadialLayout#maxLayers * @return {number} */ Object.defineProperty(RadialLayout.prototype, "maxLayers", { get: function() { return this._maxLayers; }, set: function(value) { if (this._maxLayers !== value) { this._maxLayers = value; this.invalidateLayout(); } } }); /** * Use a LayoutNetwork that always creates RadialVertexes. * @this {RadialLayout} * @return {LayoutNetwork} */ RadialLayout.prototype.createNetwork = function() { var net = new go.LayoutNetwork(this); net.createVertex = function() { return new RadialVertex(net); }; return net; } /** * @this {RadialLayout} * @param {Diagram|Group|Iterable} coll the collection of Parts to layout. */ RadialLayout.prototype.doLayout = function(coll) { if (this.network === null) { this.network = this.makeNetwork(coll); } if (this.network.vertexes.count === 0) { this.network = null; return; } if (this.root === null) { // If no root supplied, choose one without any incoming edges var it = this.network.vertexes.iterator; while (it.next()) { var v = it.value; if (v.node !== null && v.sourceEdges.count === 0) { this.root = v.node; break; } } } if (this.root === null) { // If could not find any default root, choose a random one this.root = this.network.vertexes.first().node; } if (this.root === null) { // nothing to do this.network = null; return; } var rootvert = this.network.findVertex(this.root); if (rootvert === null) throw new Error("RadialLayout.root must be a Node in the LayoutNetwork that the RadialLayout is operating on") this.arrangementOrigin = this.initialOrigin(this.arrangementOrigin); this.findDistances(rootvert); // now recursively position nodes (using radlay1()), starting with the root rootvert.centerX = this.arrangementOrigin.x; rootvert.centerY = this.arrangementOrigin.y; this.radlay1(rootvert, 1, 0, 360); // Update the "physical" positions of the nodes and links. this.updateParts(); this.network = null; } /** * @ignore * recursively position vertexes in a radial layout * @this {RadialLayout} * @param {RadialVertex} vert * @param {number} layer * @param {number} angle * @param {number} sweep */ RadialLayout.prototype.radlay1 = function(vert, layer, angle, sweep) { if (layer > this.maxLayers) return; // no need to position nodes outside of maxLayers var verts = vert.children; // array of all RadialVertexes connected to 'vert' in layer 'layer' var found = verts.length; if (found === 0) return; var fracs = []; // relative proportions that each child vertex should occupy var tot = 0; for (var i = 0; i < found; i++) { var v = verts[i]; var f = this.computeBreadth(v); fracs.push(f); tot += f; } if (tot <= 0) return; // convert into fractions 0.0 <= frac <= 1.0 for (var i = 0; i < found; i++) fracs[i] /= tot; var radius = layer * this.layerThickness; var a = angle - sweep / 2; // the angle to rotate the node to // for each vertex in this layer, place it in its correct layer and position for (var i = 0; i < found; i++) { var v = verts[i]; var breadth = fracs[i] * sweep; a += breadth / 2; if (a < 0) a += 360; else if (a > 360) a -= 360; // the point to place the node at -- this corresponds with the layer the node is in // all nodes in the same layer are placed at a constant point, then rotated accordingly var p = new go.Point(radius, 0); p.rotate(a); v.centerX = p.x + this.arrangementOrigin.x; v.centerY = p.y + this.arrangementOrigin.y; v.angle = a; v.sweep = breadth; v.radius = radius; // keep going for all layers this.radlay1(v, layer + 1, a, sweep * fracs[i]); a += breadth / 2; if (a < 0) a += 360; else if (a > 360) a -= 360; } }; /** * Compute the proportion of arc that the given vertex should take relative to its siblings. * * The default behavior is to give each child arc according to the sum of the maximum breadths of each of its children. * This assumes that all nodes have the same breadth -- i.e. that they will occupy the same sweep of arc. * It does not take the Node.actualBounds into account, nor the angle at which the node will be location relative to the origin, * nor the distance the node will be from the root node. * * In order to give each child of a vertex the same fraction of arc, override this method: * <code>computeBreadth(v) { return 1; }</code> * * In order to give each child of a vertex a fraction of arc proportional to how many children the child has: * <code>computeBreadth(v) { return Math.max(1, v.children.length); } * * @this {RadialLayout} * @param {RadialVertex} v * @return {number} */ RadialLayout.prototype.computeBreadth = function(v) { var lay = this; var b = 0; v.children.forEach(function(w) { b += lay.computeBreadth(w); }); // inefficient return Math.max(b, 1); } /** * @ignore * Update RadialVertex.distance and .children for every vertex. * @this {RadialLayout} * @param {RadialVertex} source */ RadialLayout.prototype.findDistances = function(source) { if (this.network === null) return; // keep track of distances from the source node this.network.vertexes.each(function(v) { v.distance = Infinity; v.laid = false; }); // the source node starts with distance 0 source.distance = 0; // keep track of nodes for we have set a non-Infinity distance, // but which we have not yet finished examining var seen = new go.Set(/*go.RadialVertex*/); seen.add(source); // local function for finding a vertex with the smallest distance in a given collection function leastVertex(coll) { var bestdist = Infinity; var bestvert = null; var it = coll.iterator; while (it.next()) { var v = it.value; var dist = v.distance; if (dist < bestdist) { bestdist = dist; bestvert = v; } } return bestvert; } // keep track of vertexes we have finished examining; // this avoids unnecessary traversals and helps keep the SEEN collection small var finished = new go.Set(/*go.RadialVertex*/); while (seen.count > 0) { // look at the unfinished vertex with the shortest distance so far var least = leastVertex(seen); var leastdist = least.distance; // by the end of this loop we will have finished examining this LEAST vertex seen.remove(least); finished.add(least); // look at all edges connected with this vertex least.edges.each(function(e) { var neighbor = e.getOtherVertex(least); // skip vertexes that we have finished if (finished.contains(neighbor)) return; var neighbordist = neighbor.distance; // assume "distance" along a link is unitary, but could be any non-negative number. var dist = leastdist + 1; if (dist < neighbordist) { // if haven't seen that vertex before, add it to the SEEN collection if (neighbordist == Infinity) { seen.add(neighbor); } // record the new best distance so far to that node neighbor.distance = dist; } }); } // now update the RadialVertex.children Arrays to form a tree-structure this.network.vertexes.each(function(v) { var dist = v.distance; var arr = v.children; if (!arr) arr = v.children = []; v.vertexes.each(function(w) { // use LayoutVertex.vertexes to remove duplicates // use the RadialVertex.laid property for avoiding already-traversed vertexes if (!w.laid && w !== v && w.distance === dist+1) { arr.push(w); w.laid = true; } }); }); // reset RadialVertex.laid in case of future use this.network.vertexes.each(function(v) { v.laid = false; }); } /** * This override positions each Node and also calls {@link #rotateNode}. * @this {RadialLayout} */ RadialLayout.prototype.commitLayout = function() { go.Layout.prototype.commitLayout.call(this); var it = this.network.vertexes.iterator; while (it.next()) { var v = it.value; var n = v.node; if (n !== null) { n.visible = (v.distance <= this.maxLayers); this.rotateNode(n, v.angle, v.sweep, v.radius); } } this.commitLayers(); }; /** * Override this method in order to modify each node as it is laid out. * By default this method does nothing. * @this {RadialLayout} * @param {Node} node * @param {number} angle in degrees relative to the center point * @param {number} sweep in degrees * @param {number} radius the inner radius for this node's layer */ RadialLayout.prototype.rotateNode = function(node, angle, sweep, radius) { }; /** * Override this method in order to create background circles indicating the layers of the radial layout. * By default this method does nothing. * @this {RadialLayout} */ RadialLayout.prototype.commitLayers = function() { }; // end RadialLayout /** * @ignore * @constructor * @extends LayoutVertex * @class */ function RadialVertex(network) { go.LayoutVertex.call(this, network); this.distance = Infinity; // number of layers from the root, non-negative integers this.laid = false; // used internally to keep track this.angle = 0; // the direction at which the node is placed relative to the root node this.sweep = 0; // the angle subtended by the vertex this.radius = 0; // the inner radius of the layer containing this vertex this.children = []; // vertexes connected to this vertex that have a distance one greater than this distance } go.Diagram.inherit(RadialVertex, go.LayoutVertex);