gojs
Version:
Interactive diagrams, charts, and graphs, such as trees, flowcharts, orgcharts, UML, BPMN, or business diagrams
1,124 lines (980 loc) • 90.4 kB
text/typescript
/*
* Copyright (C) 1998-2020 by Northwoods Software Corporation
* All Rights Reserved.
*
* FLOOR PLANNER: WALL RESHAPING TOOL
* Used to reshape walls via their endpoints in a Floorplan
*/
import * as go from 'gojs';
import { Floorplan } from './Floorplan.js';
import { WallBuildingTool } from './WallBuildingTool.js';
export class WallReshapingTool extends go.Tool {
private _handleArchetype: go.Shape;
private _handle: go.GraphObject | null;
private _adornedShape: go.Shape | null;
private _angle: number;
private _length: number;
private _reshapeObjectName: string;
private _isBuilding: boolean;
private _returnData: any;
private _returnPoint: go.Point | null;
private _isIntersecting: boolean; // whether the reshaping wall is intersecting at least one other wall. if so, ignore grid snap
private _wallIntersecting: go.Group | null; // the wall the reshaping endpoint is currently intersecting
// the wall(s) made after a reshape event by combining some colinear walls
// this will only not be an empty Set if the reshape has resulted in the joining of some colinear wall(s), at either the reshaping wall's reshaping endpoint or returnPoint
private _joinedWalls: go.Set<go.Group>;
/**
* @constructor
* This tool is responsible for allowing walls in a Floorplan to be reshaped via handles on either side.
*/
constructor() {
super();
const h: go.Shape = new go.Shape();
h.figure = 'Diamond';
h.desiredSize = new go.Size(12, 12);
h.fill = 'lightblue';
h.stroke = 'dodgerblue';
h.cursor = 'move';
this._handleArchetype = h;
this._handle = null;
this._adornedShape = null;
this._reshapeObjectName = 'SHAPE';
this._angle = 0;
this._length = 0;
this._isBuilding = false; // only true when a wall is first being constructed, set in WallBuildingTool's doMouseUp function
this._isIntersecting = false;
this._joinedWalls = new go.Set<go.Group>();
this._returnPoint = null; // used if reshape is cancelled; return reshaping wall endpoint to its previous location
this._returnData = null; // used if reshape is cancelled; return all windows/doors of a reshaped wall to their old place
this._joinedWalls = new go.Set<go.Group>();
this._wallIntersecting = null;
}
// Get the archetype for the handle (a Shape)
get handleArchetype() { return this._handleArchetype; }
// Get / set current handle being used to reshape the wall
get handle(): go.GraphObject | null { return this._handle; }
set handle(value: go.GraphObject | null) { this._handle = value; }
// Get / set adorned shape (shape of the Wall Group being reshaped)
get adornedShape(): go.Shape | null { return this._adornedShape; }
set adornedShape(value: go.Shape | null) { this._adornedShape = value; }
// Get / set current angle
get angle(): number { return this._angle; }
set angle(value: number) { this._angle = value; }
// Get / set length of the wall being reshaped (used only with SHIFT + drag)
get length(): number { return this._length; }
set length(value: number) { this._length = value; }
// Get / set the name of the object being reshaped
get reshapeObjectName(): string { return this._reshapeObjectName; }
set reshapeObjectName(value: string) { this._reshapeObjectName = value; }
// Get / set flag telling tool whether it's reshaping a new wall (isBuilding = true) or reshaping an old wall (isBuilding = false)
get isBuilding(): boolean { return this._isBuilding; }
set isBuilding(value: boolean) { this._isBuilding = value; }
// Get set loc data for wallParts to return to if reshape is cancelled
get returnData(): any { return this._returnData; }
set returnData(value: any) { this._returnData = value; }
// Get / set the point to return the reshaping wall endpoint to if reshape is cancelled
get returnPoint(): go.Point | null { return this._returnPoint; }
set returnPoint(value: go.Point | null) { this._returnPoint = value; }
// Get / set whether the reshaping wall is intersecting at least one other wall. if so, ignore grid snap
get isIntersecting(): boolean { return this._isIntersecting; }
set isIntersecting(value: boolean) { this._isIntersecting = value; }
// Get / set the wall the reshaping endpoint is currently intersecting
get wallIntersecting(): go.Group | null { return this._wallIntersecting; }
set wallIntersecting(value: go.Group | null) { this._wallIntersecting = value; }
// Get / set the wall created during after a reshape event by combining some colinear walls
get joinedWalls(): go.Set<go.Group> { return this._joinedWalls; }
set joinedWalls(value: go.Set<go.Group>) { this._joinedWalls = value; }
/**
* Places reshape handles on either end of a wall node.
* @param {go.Part} part The wall to adorn
*/
public updateAdornments(part: go.Part): void {
if (part === null || part instanceof go.Link) return;
if (part.isSelected && !this.diagram.isReadOnly) {
const seleltgo: go.GraphObject | null = part.findObject(this.reshapeObjectName);
if (seleltgo !== null && seleltgo.part !== null && seleltgo.part.data.category === 'WallGroup') {
const selelt: go.Shape = seleltgo as go.Shape;
let adornment: go.Adornment | null = part.findAdornment(this.name);
if (adornment === null) {
adornment = this.makeAdornment(selelt);
}
if (adornment !== null && selelt.part !== null && selelt.geometry != null) {
// update the position/alignment of each handle
const geo: go.Geometry = selelt.geometry;
const b: go.Rect = geo.bounds;
const pb: go.Rect = selelt.part.actualBounds;
// update the size of the adornment
const graphObj = adornment.findObject('BODY');
if (graphObj === null) return;
graphObj.desiredSize = b.size;
adornment.elements.each(function(h) {
if (h.name === undefined) return;
let x: number = 0;
let y: number = 0;
switch (h.name) {
case 'sPt': {
x = part.data.startpoint.x - pb.x;
y = part.data.startpoint.y - pb.y;
break;
}
case 'ePt': {
x = part.data.endpoint.x - pb.x;
y = part.data.endpoint.y - pb.y;
break;
}
}
let xCheck: number = Math.min((x - b.x) / b.width, 1);
let yCheck: number = Math.min((y - b.y) / b.height, 1);
if (xCheck < 0) xCheck = 0;
if (yCheck < 0) yCheck = 0;
if (xCheck > 1) xCheck = 1;
if (yCheck > 1) yCheck = 1;
if (isNaN(xCheck)) xCheck = 0;
if (isNaN(yCheck)) yCheck = 0;
h.alignment = new go.Spot(Math.max(0, xCheck), Math.max(0, yCheck));
});
part.addAdornment(this.name, adornment);
adornment.location = selelt.getDocumentPoint(go.Spot.Center);
return;
}
}
}
part.removeAdornment(this.name);
}
/**
* If the user has clicked down at a visible handle on a wall node, then the tool may start.
* @return {boolean}
*/
public canStart(): boolean {
if (!this.isEnabled) return false;
const diagram: go.Diagram = this.diagram;
if (diagram === null || diagram.isReadOnly) return false;
if (!diagram.allowReshape) return false;
if (!diagram.lastInput.left) return false;
const h: go.GraphObject | null = this.findToolHandleAt(diagram.firstInput.documentPoint, this.name);
return (h !== null || this.isBuilding);
}
/**
* Start a new transaction for the wall reshaping.
* Store pre-reshape location of reshaping wall's reshaping endpoint.
* Store pre-reshape locations of all wall's members (windows / doors).
*/
public doActivate(): void {
const diagram: go.Diagram = this.diagram;
if (diagram === null) return;
if (this.isBuilding) {
// this.adornedShape has already been set in WallBuildingTool's doMouseDown function
if (this.adornedShape !== null && this.adornedShape.part !== null) {
const wall: go.Group = this.adornedShape.part as go.Group;
this.handle = this.findToolHandleAt(wall.data.endpoint, this.name);
this.returnPoint = wall.data.startpoint;
}
} else {
this.handle = this.findToolHandleAt(diagram.firstInput.documentPoint, this.name);
if (this.handle === null) return;
const adorn: go.Adornment = this.handle.part as go.Adornment;
const shape: go.Shape = adorn.adornedObject as go.Shape;
const wall: go.Group = shape.part as go.Group;
if (!shape) return;
this.adornedShape = shape;
// store pre-reshape location of wall's reshaping endpoint
this.returnPoint = this.handle.name === 'sPt' ? wall.data.startpoint : wall.data.endpoint;
// store pre-reshape locations of all wall's members (windows / doors)
const wallParts: go.Iterator<go.Part> = wall.memberParts;
if (wallParts.count !== 0) {
const locationsMap: go.Map<string, go.Point> = new go.Map<string, go.Point>();
wallParts.iterator.each(function(wallPart) {
locationsMap.add(wallPart.data.key, wallPart.location);
});
this.returnData = locationsMap;
}
}
// diagram.isMouseCaptured = true;
this.startTransaction(this.name);
this.isActive = true;
}
/**
* Adjust the handle's coordinates, along with the wall's points.
*/
public doMouseMove(): void {
const fp: Floorplan = this.diagram as Floorplan;
const tool: WallReshapingTool = this;
if (tool.handle === null) return;
const adorn: go.Adornment = tool.handle.part as go.Adornment;
const wall: go.Group = adorn.adornedPart as go.Group;
// the stationaryPt
let mousePt: go.Point = fp.lastInput.documentPoint;
if (tool.isActive && fp !== null) {
// if user is holding shift, make sure the angle of the reshaping wall (from stationaryPt to mousePt) is a multiple of 45
if (fp.lastInput.shift) {
// what's the current angle made from stationaryPt to mousePt?
const type = tool.handle.name;
const stationaryPt: go.Point = (type === 'sPt') ? wall.data.endpoint : wall.data.startpoint;
let ang: number = stationaryPt.directionPoint(mousePt);
const length: number = Math.sqrt(stationaryPt.distanceSquaredPoint(mousePt));
ang = Math.round(ang / 45) * 45;
let newPoint: go.Point = new go.Point(stationaryPt.x + length, stationaryPt.y);
// rotate the new point ang degrees
const dx: number = stationaryPt.x; const dy = stationaryPt.y;
newPoint = newPoint.offset(-dx, -dy); // move point to origin
newPoint = newPoint.rotate(ang); // rotate ang degrees around origin
newPoint = newPoint.offset(dx, dy); // add back offset
mousePt = newPoint;
}
// if the mousePt is close to some wall's endpoint, snap the mousePt to that endpoint
const walls: go.Iterator<go.Group> = fp.findNodesByExample({ category: 'WallGroup' }) as go.Iterator<go.Group>;
walls.iterator.each(function(w: go.Group) {
if (w.data.key !== wall.data.key) {
const spt: go.Point = w.data.startpoint; const ept: go.Point = w.data.endpoint;
// if the mousePt is inside the geometry of another wall, project the point onto that wall
if (fp.isPointInWall(w, mousePt)) {
mousePt = mousePt.projectOntoLineSegmentPoint(w.data.startpoint, w.data.endpoint);
tool.isIntersecting = true; // yes, the current reshaping wall is intersecting another wall
}
// if the mousePt is close to some wall's endpoint, snap the mousePt to that endpoint
if (Math.sqrt(spt.distanceSquaredPoint(mousePt)) < 10) {
mousePt = spt;
} else if (Math.sqrt(ept.distanceSquaredPoint(mousePt)) < 10) {
mousePt = ept;
}
}
});
// if the resulting segment between stationary pt and mousePt would intersect other wall(s), project mousePt onto the first wall it would intersect
const iw = tool.getClosestIntersectingWall(mousePt);
// if we are or just were intersecting some wall, miter it
if (iw === null || tool.wallIntersecting !== null) {
if (tool.wallIntersecting !== null && tool.wallIntersecting !== undefined && tool.wallIntersecting.data !== null) {
tool.performMiteringOnWall(tool.wallIntersecting);
}
}
if (iw != null) {
tool.isIntersecting = true; // yes, the current reshaping wall is intersecting another wall
tool.wallIntersecting = iw;
mousePt = mousePt.projectOntoLineSegmentPoint(iw.data.startpoint, iw.data.endpoint);
// if the mousePt is really close to an endpoint of its intersecting wall, make it that endpoint
const distToSpt: number = Math.sqrt(mousePt.distanceSquaredPoint(iw.data.startpoint));
const distToEpt: number = Math.sqrt(mousePt.distanceSquaredPoint(iw.data.endpoint));
if (distToSpt < 25) {
mousePt = iw.data.startpoint;
} else if (distToEpt < 10) {
mousePt = iw.data.endpoint;
}
} else {
tool.isIntersecting = false;
// if the wall we were previously intersecting is not touching the reshaping wall, forget it
if (tool.wallIntersecting !== null && tool.wallIntersecting !== undefined &&
tool.wallIntersecting.data !== null && fp.getWallsIntersection(wall, tool.wallIntersecting) === null) {
tool.wallIntersecting = null;
}
}
tool.calcAngleAndLengthFromHandle(mousePt); // sets this.angle and this.length (useful for when SHIFT is held)
tool.reshape(mousePt);
}
tool.performMiteringOnWall(wall);
fp.updateWallDimensions();
fp.updateWallAngles();
}
/**
* Get the closest wall the reshaping wall intersects with.
* Returns null if reshaping wall does not intersect with any other wall.
* @param {go.Point} proposedPt The proposed point for the reshaping wall's moving pt
* @return {go.Group | null} The closest wall the reshaping wall's reshaping endpoint intersects with
*/
private getClosestIntersectingWall(proposedPt: go.Point): go.Group | null {
const tool: WallReshapingTool = this;
if (tool.handle === null) return null;
const adorn: go.Adornment = tool.handle.part as go.Adornment;
const wall: go.Group = adorn.adornedPart as go.Group;
const type = tool.handle.name;
const stationaryPt: go.Point = (type === 'sPt') ? wall.data.endpoint : wall.data.startpoint;
// dummy wall is used for intersection checks, since the reshaping wall has not had its data yet set
const dummyWallData: any = {
key: 'wall', category: 'WallGroup', caption: 'Wall', type: 'Wall', startpoint: stationaryPt,
smpt1: stationaryPt, smpt2: stationaryPt, endpoint: proposedPt, empt1: proposedPt, empt2: proposedPt,
thickness: parseFloat(tool.diagram.model.modelData.wallThickness), isGroup: true, notes: ''
};
tool.diagram.model.addNodeData(dummyWallData);
const dummyWall: go.Group = tool.diagram.findPartForKey(dummyWallData.key) as go.Group;
const fp: Floorplan = tool.diagram as Floorplan;
const walls: go.Iterator<go.Group> = tool.diagram.findNodesByExample({ category: 'WallGroup' }) as go.Iterator<go.Group>;
let closestWall: go.Group | null = null; let closestDistance: number = Number.MAX_VALUE;
walls.iterator.each(function(w) {
if (w.data.key !== wall.data.key && w.data.key !== dummyWall.data.key) {
// check if wall and w intersect, and if so, where
const intersectPoint: go.Point | null = fp.getWallsIntersection(dummyWall, w);
// also, don't project onto a wall the stationaryPt is already along (this would make two walls on top of each other)
let isStationaryPtOnW = false;
const ab: number = parseFloat(Math.sqrt(w.data.startpoint.distanceSquaredPoint(stationaryPt)).toFixed(2));
const bc: number = parseFloat(Math.sqrt(stationaryPt.distanceSquaredPoint(w.data.endpoint)).toFixed(2));
const ac: number = parseFloat(Math.sqrt(w.data.startpoint.distanceSquaredPoint(w.data.endpoint)).toFixed(2));
if (Math.abs((ab + bc) - ac) <= .1) {
isStationaryPtOnW = true;
}
if (intersectPoint !== null && !isStationaryPtOnW) {
// calc distance from stationaryPoint to proposed intersection point
const dist: number = Math.sqrt(stationaryPt.distanceSquaredPoint(intersectPoint));
if (dist < closestDistance) {
closestDistance = dist;
closestWall = w;
}
}
}
});
// remove the dummy wall
fp.remove(dummyWall);
return closestWall;
}
/**
* Returns whether or not 2 points are "close enough" to each other.
* "Close enough" is, by default, defined as a point whose x and y values are within .05
* document units of another point's x and y values.
* @param {go.Point} p1
* @param {go.Point} p2
* @return {boolean}
*/
public pointsApproximatelyEqual(p1: go.Point, p2: go.Point): boolean {
const x1: number = p1.x; const x2: number = p2.x;
const y1: number = p1.y; const y2: number = p2.y;
const diff1: number = Math.abs(x2 - x1);
const diff2: number = Math.abs(y2 - y1);
if (diff2 < .05 && diff1 < .05) {
return true;
}
return false;
}
/**
* Sets the counterclockwise mitering point for wallA / clockwise mitering point for wallB.
* This algorithm based on https://math.stackexchange.com/questions/1849784/calculate-miter-points-of-stroked-vectors-in-cartesian-plane.
* @param {go.Group} wa wallA
* @param {go.Group} wb wallB
*/
private performMitering(wa: go.Group, wb: go.Group): void {
const tool = this;
const diagram: Floorplan = this.diagram as Floorplan;
// wall endpoints, thicknesses, lengths
const as: go.Point = wa.data.startpoint;
const ae: go.Point = wa.data.endpoint;
const bs: go.Point = wb.data.startpoint;
const be: go.Point = wb.data.endpoint;
const wat: number = wa.data.thickness; const wbt: number = wb.data.thickness;
const wal: number = Math.sqrt(as.distanceSquaredPoint(ae)); const wbl: number = Math.sqrt(bs.distanceSquaredPoint(be));
// points
const B: go.Point | null = diagram.getWallsIntersection(wa, wb); // intersection point
if (B === null) {
return;
}
let A: go.Point = (tool.pointsApproximatelyEqual(as, B)) ? ae : as; // wallA non-intersection point
let C: go.Point = (tool.pointsApproximatelyEqual(bs, B)) ? be : bs; // wallB non-intersection point
// edge case: non-endpoint intersection
// must know which wall is outer wall (the one who has no endpoint in the intersection)
// and which wall is inner wall (the one with an endpoint in the intersection)
let ow: go.Group | null = null; let iw: go.Group | null = null;
if (!tool.pointsApproximatelyEqual(as, B) && !tool.pointsApproximatelyEqual(ae, B)) {
ow = wa;
iw = wb;
} else if (!tool.pointsApproximatelyEqual(bs, B) && !tool.pointsApproximatelyEqual(be, B)) {
ow = wb;
iw = wa;
}
// if wall A is the inner wall, use the endpoint of wall B that counterclockwise from point A for point C
if (ow !== null && iw !== null && wa.data.key === iw.data.key) {
if (tool.isClockwise(A, B, ow.data.startpoint)) {
C = ow.data.startpoint;
} else {
C = ow.data.endpoint;
}
}
// if wall B is the inner wall, use endpoint of wall A that's clockwise from point C for point A
if (ow !== null && iw !== null && wb.data.key === iw.data.key) {
if (tool.isClockwise(B, C, ow.data.startpoint)) {
A = ow.data.startpoint;
} else {
A = ow.data.endpoint;
}
}
// angle between wallA and wallB, clockwise, in degrees
const a1: number = B.directionPoint(A);
const a2: number = B.directionPoint(C);
let ang: number = Math.abs(a1 - a2 + 360) % 360;
if (Math.abs(ang - 180) < .1) {
return;
}
ang = ang * (Math.PI / 180); // radians
// create a parallelogram with altitudes wat/2 and wbt/2, s.t. u and v are the lengths from B to reach D (counterclockwise mitering point)
const u: number = Math.abs(wbt / (2 * (Math.sin(ang))));
const v: number = Math.abs(wat / (2 * (Math.sin(ang))));
// get u and v vectors
const ab: number = Math.sqrt(A.distanceSquaredPoint(B));
const bc: number = Math.sqrt(B.distanceSquaredPoint(C));
const ux: number = ((A.x - B.x) / ab) * u;
const uy: number = ((A.y - B.y) / ab) * u;
// only for endpoint-endpoint?
const vx: number = ((C.x - B.x) / bc) * v;
const vy: number = ((C.y - B.y) / bc) * v;
// these are the mitering points
const D: go.Point = new go.Point(B.x + ux + vx, B.y + uy + vy);
const E: go.Point = new go.Point(B.x - ux - vx, B.y - uy - vy);
// miter limit TODO???
const minLength: number = Math.min(wal, wbl);
if (Math.sqrt(D.distanceSquaredPoint(B)) > minLength) {
return;
}
// mitering point / other mitering point
const mpt: go.Point = tool.isClockwise(B, A, D) ? E : D;
if (isNaN(mpt.x) || isNaN(mpt.y)) {
return;
}
// now figure out which mitering point of wallA's data to modify
// only modify a mitering point in data if B is one of wallA's endpoints
if (tool.pointsApproximatelyEqual(as, B) || tool.pointsApproximatelyEqual(ae, B)) {
let prop: string | null = null;
// wall A's direction to point B is from startpoint to endpoint
if (tool.pointsApproximatelyEqual(A, as)) {
// if ang2 is clockwise of ang1, update empt1
if (tool.isClockwise(A, B, mpt)) {
prop = 'empt1';
} else {
prop = 'empt2';
}
} else if (tool.pointsApproximatelyEqual(A, ae)) {
// wall A's direction to point B is from endpoint to startpoint
if (tool.isClockwise(A, B, mpt)) {
prop = 'smpt2';
} else {
prop = 'smpt1';
}
}
if (prop !== null) {
diagram.model.setDataProperty(wa.data, prop, mpt);
diagram.updateWall(wa);
}
}
// same, but for wall B
if (tool.pointsApproximatelyEqual(bs, B) || tool.pointsApproximatelyEqual(be, B)) {
let prop: string | null = null;
// wall A's direction to point B is from startpoint to endpoint
if (tool.pointsApproximatelyEqual(C, bs)) {
// if ang2 < ang1, update empt1
if (tool.isClockwise(C, B, mpt)) {
prop = 'empt1';
} else {
prop = 'empt2';
}
} else if (tool.pointsApproximatelyEqual(C, be)) {
// wall A's direction to point B is from endpoint to startpoint
if (tool.isClockwise(C, B, mpt)) {
prop = 'smpt2';
} else {
prop = 'smpt1';
}
}
if (prop !== null) {
diagram.model.setDataProperty(wb.data, prop, mpt);
diagram.updateWall(wb);
}
}
}
/**
* Returns a set of all the wall intersections in the entire floorplan.
* Each entry is a stringified points (i.e. "0 0").
* @return {go.Set<string>}
*/
public getAllWallIntersectionPoints(): go.Set<string> {
const tool: WallReshapingTool = this;
const diagram: Floorplan = tool.diagram as Floorplan;
// get all walls
const walls: go.Iterator<go.Group> = diagram.findNodesByExample({ category: 'WallGroup' }) as go.Iterator<go.Group>;
const intersectionPoints: go.Set<string> = new go.Set(); // set of Points where walls intersect
walls.iterator.each(function(w) {
// for each wall, go through all other walls; if this wall intersects another wall, mark it as an intersection point
const otherWalls: go.Iterator<go.Group> = diagram.findNodesByExample({ category: 'WallGroup' }) as go.Iterator<go.Group>;
otherWalls.iterator.each(function(ow) {
if (ow.data.key === w.data.key) return; // do not check for intersection with self
const ip: go.Point | null = diagram.getWallsIntersection(w, ow);
let doAdd: boolean = true;
if (ip !== null) {
// make sure there is not already an intersection point in the set that's really close to this one
intersectionPoints.iterator.each(function(ips) {
const ip2: go.Point = go.Point.parse(ips);
if (tool.pointsApproximatelyEqual(ip2, ip)) {
doAdd = false;
}
});
if (doAdd) {
intersectionPoints.add(go.Point.stringify(ip));
}
}
});
});
return intersectionPoints;
}
/**
* Get all the walls with an endpoint at a given Point.
* Returns a List of all walls involved in that intersection.
* @param {go.Point | null} intersectionPoint
* @param {boolean} includeDividers Whether or not to also include Room Dividers with endpoints at intersectionPoint. Default is true.
* @return {go.List<go.Group>}
*/
public getAllWallsAtIntersection(intersectionPoint: go.Point | null, includeDividers?: boolean): go.List<go.Group> {
if (includeDividers === undefined || includeDividers === null) {
includeDividers = true;
}
const tool: WallReshapingTool = this;
const diagram: Floorplan = tool.diagram as Floorplan;
const wallsInvolved: go.List<go.Group> = new go.List(); // list of walls, which will be sorted clockwise
if (intersectionPoint === null) {
return wallsInvolved;
}
diagram.findObjectsNear(
intersectionPoint,
1,
function(x: go.GraphObject) {
if (x.part !== null) {
return x.part;
} return null;
},
function(p) {
if (!(p instanceof go.Group && p.category === 'WallGroup' && (includeDividers || !p.data.isDivider) && !wallsInvolved.contains(p))) return false;
// make sure the wall's segment includes ip
const s: go.Point = p.data.startpoint;
const e: go.Point = p.data.endpoint;
return tool.isPointOnSegment(s, e, intersectionPoint);
},
true,
wallsInvolved
);
return wallsInvolved;
}
/**
* Returns whether or not 2 walls share at least one endpoint
* @param {go.Group} wa
* @param {go.Group} wb
* @return {boolean}
*/
private doWallsShareAnEndpoint(wa: go.Group, wb: go.Group): boolean {
const tool: WallReshapingTool = this;
const as: go.Point = wa.data.startpoint; const ae: go.Point = wa.data.endpoint;
const bs: go.Point = wb.data.startpoint; const be: go.Point = wb.data.endpoint;
if (tool.pointsApproximatelyEqual(as, bs) || tool.pointsApproximatelyEqual(as, be)
|| tool.pointsApproximatelyEqual(ae, bs) || tool.pointsApproximatelyEqual(ae, be)) {
return true;
}
return false;
}
/**
* This function, called on {@link doMouseUp} event, checks if the reshaping wall's reshaping endpoint is now intersecting a wall.
* If so, that intersected wall is split into 2 walls at the intersection point. All walls at the intersection point are then mitered.
* Next, it checks if the reshapingWall has become a new, big wall (via {@link joinColinearWalls}).
* If so, we must split the new wall at any points it intersects with others.
* Room boundary data that depended on the split wall is then updated to reflect the split.
*/
public maybeSplitWall(): void {
const tool: WallReshapingTool = this;
if (tool.handle === null) return;
const adorn: go.Adornment = tool.handle.part as go.Adornment;
const reshapingWall: go.Group = adorn.adornedPart as go.Group;
const movingProp: string = tool.handle.name;
const movingPt: go.Point = movingProp === 'sPt' ? reshapingWall.data.startpoint : reshapingWall.data.endpoint;
const jw: go.Set<go.Group> = tool.joinedWalls;
const wallsAtEndpoint: go.List<go.Group> = tool.getAllWallsAtIntersection(movingPt);
// exclude the reshapingWall from wallsAtEndpoint
wallsAtEndpoint.remove(reshapingWall);
jw.iterator.each(function(ww: go.Group) {
wallsAtEndpoint.remove(ww);
});
if (wallsAtEndpoint.count === 1) {
const wallToSplit: go.Group | null = wallsAtEndpoint.first();
if (wallToSplit !== null) {
// make sure this is not an endpoint to endpoint connection
if (!tool.doWallsShareAnEndpoint(reshapingWall, wallToSplit)) {
tool.maybePerformWallSplit(wallToSplit, movingPt);
}
}
}
// if we're building a wall, it's possible we need to split at the stationary pt too
if (tool.isBuilding) {
const stationaryPt: go.Point = movingPt === reshapingWall.data.startpoint ? reshapingWall.data.endpoint : reshapingWall.data.startpoint;
const wallsAtStationaryPt: go.List<go.Group> = tool.getAllWallsAtIntersection(stationaryPt);
wallsAtStationaryPt.remove(reshapingWall);
jw.iterator.each(function(ww: go.Group) {
wallsAtEndpoint.remove(ww);
});
if (wallsAtStationaryPt.count === 1) {
const wallToSplit: go.Group | null = wallsAtStationaryPt.first();
if (wallToSplit !== null) {
// make sure this is not an endpoint to endpoint connection
if (!tool.doWallsShareAnEndpoint(reshapingWall, wallToSplit)) {
tool.maybePerformWallSplit(wallToSplit, stationaryPt);
}
}
}
}
// if this reshape event has created a big joined wall, the joined wall may need to be split
// find out if either endpoint of the original reshaping wall is NOT one of the endpoints of joinedWall
// if so, split the joinedWall at that endpoint
if (jw !== null) {
jw.iterator.each(function(ww: go.Group) {
// find all points along the joined wall where it intersects with other walls and split along them
tool.splitNewWall(ww);
});
}
}
/**
* Finds all points along a new wall (created via {@link joinColinearWalls}) and splits / miters at each.
* @param w The newly joined wall
*/
private splitNewWall(w: go.Group): void {
const tool: WallReshapingTool = this;
const fp: Floorplan = this.diagram as Floorplan;
// find all walls that intersect this wall
const walls: go.Iterator<go.Group> = fp.findNodesByExample({ category: 'WallGroup' }) as go.Iterator<go.Group>;
const ips: go.Set<go.Point> = new go.Set<go.Point>();
walls.iterator.each(function(ww: go.Group) {
const ip: go.Point | null = fp.getWallsIntersection(w, ww);
if (ip !== null) {
ips.add(ip);
}
});
ips.iterator.each(function(ip: go.Point) {
const wi: go.List<go.Group> = tool.getAllWallsAtIntersection(ip);
wi.iterator.each(function(ww: go.Group) {
const s: go.Point = ww.data.startpoint;
const e: go.Point = ww.data.endpoint;
if (!tool.pointsApproximatelyEqual(s, ip) && !tool.pointsApproximatelyEqual(e, ip)) {
tool.maybePerformWallSplit(ww, ip);
}
});
});
}
/**
* Split a given wall into 2 at a given intersection point, if the given point is on the wall and not on one of the wall's endpoints.
* The resultant two walls are then mitered.
* Room boundary data that depended on the split wall is then updated to reflect the split.
* @param {go.Group} w wall to split
* @param {go.Point} ip intersection point where the split should occur
*/
private maybePerformWallSplit(w: go.Group, ip: go.Point): void {
const tool: WallReshapingTool = this;
const fp: Floorplan = tool.diagram as Floorplan;
const s: go.Point = w.data.startpoint; const e: go.Point = w.data.endpoint;
const type: string = w.data.isDivider ? 'Divider' : 'Wall';
// this wall has neither endpoint in the intersection -- it must be split into 2 walls
const data1 = {
key: 'wall', category: 'WallGroup', caption: type, type: type, color: w.data.color,
startpoint: s, endpoint: ip, smpt1: s, smpt2: s, empt1: ip, empt2: ip,
thickness: w.data.thickness, isGroup: true, notes: '',
isDivider: w.data.isDivider
};
const data2 = {
key: 'wall', category: 'WallGroup', caption: type, type: type, color: w.data.color,
startpoint: ip, endpoint: e, smpt1: ip, smpt2: ip, empt1: e, empt2: e,
thickness: w.data.thickness, isGroup: true, notes: '',
isDivider: w.data.isDivider
};
// only actually split the wall if the 2 new walls would both have at least length 1
// and if there are no walls with endpoints very close to these proposed ones
const l1: number = Math.sqrt(data1.startpoint.distanceSquaredPoint(data1.endpoint));
const l2: number = Math.sqrt(data2.startpoint.distanceSquaredPoint(data2.endpoint));
const walls: go.Iterator<go.Group> = fp.findNodesByExample({ category: 'WallGroup' }) as go.Iterator<go.Group>;
let alreadyExists: boolean = false;
walls.iterator.each(function(wc: go.Group) {
const ws: go.Point = wc.data.startpoint; const we: go.Point = wc.data.endpoint;
if ((tool.pointsApproximatelyEqual(s, ws) && tool.pointsApproximatelyEqual(ip, we)) ||
(tool.pointsApproximatelyEqual(s, we) && tool.pointsApproximatelyEqual(ip, ws))) {
alreadyExists = true;
}
if ((tool.pointsApproximatelyEqual(ip, ws) && tool.pointsApproximatelyEqual(e, we)) ||
(tool.pointsApproximatelyEqual(ip, we) && tool.pointsApproximatelyEqual(e, ws))) {
alreadyExists = true;
}
});
if (l1 > 1 && l2 > 1 && !alreadyExists) {
fp.model.addNodeData(data1);
fp.model.addNodeData(data2);
const w1: go.Group = fp.findNodeForData(data1) as go.Group;
const w2: go.Group = fp.findNodeForData(data2) as go.Group;
// Before removing the original wall from the Floorplan, update relevant room boundarywalls data
// iff this method is being called as a result of a user-prompted wall reshape action
// needed so proper mitering side of replacement entry walls can be determined
tool.premiterWall(w1);
tool.premiterWall(w2);
tool.performMiteringAtPoint(ip, false);
if (tool.handle !== null) {
const rooms: go.Iterator<go.Node> = fp.findNodesByExample({ category: 'RoomNode' });
const adorn: go.Adornment = tool.handle.part as go.Adornment;
const rw: go.Group = adorn.adornedPart as go.Group; // reshaping wall
// go through rooms, find any whose boundary walls contain w (the wall that was split, soon to be removed)
rooms.iterator.each(function(r: go.Node) {
const bw: Array<any> = r.data.boundaryWalls;
for (let i: number = 0; i < bw.length; i++) {
const entry: any = bw[i];
const wk: string = entry[0];
if (wk === w.data.key) {
// then, find out if the reshaping wall, at the non-ip endpoint, is connected to another wall in that room's boundary walls
let isConnectedToBounds: boolean = false;
const nonIpEndpoint: go.Point = (tool.pointsApproximatelyEqual(rw.data.startpoint, ip)) ? rw.data.endpoint : rw.data.startpoint;
const iw: go.List<go.Group> = tool.getAllWallsAtIntersection(nonIpEndpoint);
iw.iterator.each(function(ww: go.Group) {
// if boundary walls contains ww and ww is not the reshaping wall, reshaping wall is connected to room boundary walls at non ip endpoint
for (let j = 0; j < bw.length; j++) {
const ee: any = bw[j];
const wk2: string = ee[0];
if (ww.data.key === wk2 && ww.data.key !== rw.data.key) {
isConnectedToBounds = true;
}
}
});
// if yes, replace the w entry in boundary walls with just one new entry, using the split wall that is connected to some other wall in bounds
if (isConnectedToBounds) {
// find out whether w1 or w2 is connected to another wall in boundary walls
let isW1ConnectedToBounds: boolean = false;
const w1NonIpEndpoint: go.Point = (tool.pointsApproximatelyEqual(w1.data.startpoint, ip)) ? w1.data.endpoint : w1.data.startpoint;
const iw2: go.List<go.Group> = tool.getAllWallsAtIntersection(w1NonIpEndpoint);
iw2.remove(w); // do not include the wall soon to be destroyed
// go through all walls at w1's non-ip endpoint and find out if one of those is in r's boundary walls
iw2.iterator.each(function(ww: go.Group) {
for (let j: number = 0; j < bw.length; j++) {
const entry2: any = bw[j];
const wk2: string = entry2[0];
if (ww.data.key === wk2 && w1.data.key !== ww.data.key) {
// additional followup -- make sure ww2 is still connected to r's boundary walls at other endpoint (not connected to w1NonIpEndpoint)
const ww2: go.Group = fp.findNodeForKey(wk2) as go.Group;
const ww2OtherEndpoint: go.Point = (tool.pointsApproximatelyEqual(ww2.data.startpoint, w1NonIpEndpoint)) ? ww2.data.endpoint : ww2.data.startpoint;
const iw3: go.List<go.Group> = tool.getAllWallsAtIntersection(ww2OtherEndpoint);
iw3.iterator.each(function(ww3: go.Group) {
for (let k = 0; k < bw.length; k++) {
const entry3: any = bw[k];
const wk3: string = entry3[0];
if (wk3 === ww3.data.key && wk3 !== ww2.data.key) {
isW1ConnectedToBounds = true;
}
}
});
}
}
});
// replace this entry of r's boundary walls with the replacementWall
const replacementWall: go.Group = (isW1ConnectedToBounds) ? w1 : w2;
const replacementEntry = tool.getUpdatedEntry(entry, replacementWall);
fp.startTransaction();
const newBounds: Array<any> = bw.slice();
newBounds[i] = replacementEntry;
fp.model.setDataProperty(r.data, 'boundaryWalls', newBounds);
fp.commitTransaction();
} else {
// if no, replace the w entry with both split walls. Order those 2 entries CC, relative to reshaping wall
// get a List of walls involved (reshaping wall, w1, and w2)
let wi: go.List<go.Group> = new go.List<go.Group>();
wi.add(rw); wi.add(w1); wi.add(w2);
wi = fp.sortWallsClockwiseWithSetStartWall(wi, rw);
// get replacement entries for the entry with w
const replacementEntry2: any = tool.getUpdatedEntry(entry, wi.toArray()[1]);
const replacementEntry1: any = tool.getUpdatedEntry(entry, wi.toArray()[2]);
// insert these replacement entries into the bw at index i, remove
fp.startTransaction();
const newBounds: Array<any> = bw.slice();
newBounds.splice(i, 1, replacementEntry1);
newBounds.splice(i + 1, 0, replacementEntry2);
fp.model.setDataProperty(r.data, 'boundaryWalls', newBounds);
fp.commitTransaction();
}
}
}
}); // end rooms iteration
}
// Maintain wall parts that were on the big wall -- give them new locations on the most appropriate of the split walls, if possible
const wallParts: go.Iterator<go.Node> = fp.findNodesByExample({ group: w.data.key });
const wallsSet: go.Set<go.Group> = new go.Set<go.Group>();
wallsSet.add(w1); wallsSet.add(w2);
tool.maintainWallParts(wallParts, wallsSet);
// remove original wall
fp.remove(w);
// perform mitering
tool.premiterWall(w1);
tool.premiterWall(w2);
const w1op: go.Point = tool.pointsApproximatelyEqual(w1.data.startpoint, ip) ? w1.data.endpoint : w1.data.startpoint;
const w2op: go.Point = tool.pointsApproximatelyEqual(w2.data.startpoint, ip) ? w2.data.endpoint : w2.data.startpoint;
tool.performMiteringAtPoint(ip, false);
tool.performMiteringAtPoint(w1op, false);
tool.performMiteringAtPoint(w2op, false);
}
}
/**
* Go through all walls -- if a wall crosses another at a non-endpoint-to-endpoint connection, split that wall in 2
* such that only endpoint to endpoint connections exist (this makes mitering much easier).
* NOTE: Since this goes through all walls in the Floorplan, performance can get bad quickly. Use this method sparingly, if at all
*/
public splitAllWalls(): void {
const tool = this;
const intersectionPoints: go.Set<string> = tool.getAllWallIntersectionPoints();
intersectionPoints.iterator.each(function(ips: string) {
const ip: go.Point = go.Point.parse(ips);
const wallsInvolved: go.List<go.Group> = tool.getAllWallsAtIntersection(ip);
// find all walls involved that do not have their start or endpoint at the intersection point
wallsInvolved.iterator.each(function(w) {
const s: go.Point = w.data.startpoint;
const e: go.Point = w.data.endpoint;
if (!tool.pointsApproximatelyEqual(s, ip) && !tool.pointsApproximatelyEqual(e, ip)) {
tool.maybePerformWallSplit(w, ip);
}
});
});
}
/**
* Return whether or not wall A is parallel to wall B.
* @param {go.Group} wa Wall A
* @param {go.Group} wb Wall B
* @return {boolean}
*/
private areWallsParallel(wa: go.Group, wb: go.Group): boolean {
const tool: WallReshapingTool = this;
const fp: Floorplan = this.diagram as Floorplan;
const as: go.Point = wa.data.startpoint;
const ae: go.Point = wa.data.endpoint;
const bs: go.Point = wb.data.startpoint;
const be: go.Point = wb.data.endpoint;
let isParallel: boolean = false;
const a1: number = +as.directionPoint(ae);
const a2: number = +bs.directionPoint(be);
if (Math.abs(a1 - a2) < 1 || (Math.abs(a1 - a2) > 179 && Math.abs(a1 - a2) < 181)) {
isParallel = true;
}
return isParallel;
}
/**
* Returns whether wall B is colinear to wall A.
* Wall A is colinear with Wall B if it:
* 0) Is the same wall type as Wall B (wall | divider)
* 1) Is parallel with Wall B
* 2) Shares an endpoint, 'p', with Wall B, and
* 2a) Any / all walls with endpoints at p are all parallel to wall A / B
* @param {go.Group} wa wall A
* @param {go.Group} wb wall B
* @return {boolean}
*/
public isWallColinear(wa: go.Group, wb: go.Group): boolean {
const tool: WallReshapingTool = this;
const fp: Floorplan = this.diagram as Floorplan;
if (wa.data.isDivider !== wb.data.isDivider) {
return false;
}
const as: go.Point = wa.data.startpoint;
const ae: go.Point = wa.data.endpoint;
const bs: go.Point = wb.data.startpoint;
const be: go.Point = wb.data.endpoint;
let isColinear: boolean = false;
// 1) Is wall A parallel with Wall B? (or close enough to parallel)
if (tool.areWallsParallel(wa, wb)) {
// get the endpoint shared by wa and wb, if it exists
let sharedEndpoint: go.Point | null = null;
if (tool.pointsApproximatelyEqual(as, bs) || tool.pointsApproximatelyEqual(as, be)) {
sharedEndpoint = as;
} else if (tool.pointsApproximatelyEqual(ae, bs) || tool.pointsApproximatelyEqual(ae, be)) {
sharedEndpoint = ae;
}
if (sharedEndpoint !== null) {
// Make sure all walls with an endpoint at sharedEndpoint are parallel to wa
const wi: go.List<go.Group> = tool.getAllWallsAtIntersection(sharedEndpoint);
let endpointHasNonColinearWall: boolean = false;
wi.iterator.each(function(w: go.Group) {
if (!tool.areWallsParallel(w, wa)) {
endpointHasNonColinearWall = true;
}
});
if (!endpointHasNonColinearWall) {
isColinear = true;
}
}
}
return isColinear;
}
/**
* Get all walls colinear to wall w and store them in a given Set.
* @param {go.Group} w
* @param {go.Set<go.Group>} set Optional
* @return {go.Set<go.Group>}
*/
private findAllColinearWalls(w: go.Group, set?: go.Set<go.Group>): go.Set<go.Group> {
if (set === null || set === undefined) {
set = new go.Set<go.Group>();
}
// make sure Set contains w
set.add(w);
const tool: WallReshapingTool = this;
const diagram: Floorplan = tool.diagram as Floorplan;
const walls: go.Iterator<go.Group> = diagram.findNodesByExample({ category: 'WallGroup' }) as go.Iterator<go.Group>;
walls.iterator.each(function(ow) {
if (tool.isWallColinear(w, ow) && set !== undefined && !set.contains(ow)) {
set.add(ow);
tool.findAllColinearWalls(ow, set);
}
});
return set;
}
/**
* This function, called after each {@link doMouseUp} event, checks for colinear pairs of walls at two places.
* First, it checks for colinear walls with the reshaping wall.
* Second, it checks for colinear walls at {@link returnPoint}.
* If there are colinear walls found, they are joined into one big wall. Resultant wall(s) are then mitered.
* Additionally, any rooms whose geometries depended on one of the walls that was just joined have their data updated,
* replacing the old (removed) wall(s) in data with the new one.
* Note: These rooms will have the final update to their geometry / data done later, in updateRoomBoundaries().
* The data manipulation done here is just to ensure the walls removed by this function are not referenced anywhere in room data anymore.
*/
public joinColinearWalls(): void {
const tool: WallReshapingTool = this;
if (tool.handle === null) return;
// 1) Check if the reshaping wall is colinear with another wall at one of its endpoints
const adorn: go.Adornment = tool.handle.part as go.Adornment;
const reshapingWall: go.Group = adorn.adornedPart as go.Group;
const cw1: go.Set<go.Group> = tool.findAllColinearWalls(reshapingWall);
const jw: go.Group | null = tool.performColinearWallJoining(cw1, reshapingWall);
if (jw !== null) {
tool.joinedWalls.add(jw);
}
// 2) Check if there are 2 colinear walls at returnPoint (where the reshaping endpoint originally was)
const wallsAtReturnPoint: go.List<go.Group> = tool.getAllWallsAtIntersection(tool.returnPoint);
if (wallsAtReturnPoint.count === 2) {
const wallsArr: Array<go.Group> = wallsAtReturnPoint.toArray();
const w1: go.Group = wallsArr[0]; const w2: go.Group = wallsArr[1];
if (tool.isWallColinear(w1, w2)) {
const cw2: go.Set<go.Group> = new go.Set<go.Group>();
cw2.add(w1); cw2.add(w2);
const jw2: go.Group | null = tool.performColinearWallJoining(cw2, w1);
if (jw2 !== null) {
tool.joinedWalls.add(jw2);
}
}
}
}
/**
* Join a set of colinear walls into one big wall. The big wall is then mitered.
* Constituent walls in colinear wall set are removed.
* As such, if any rooms depend on them for boundary data, those room's data is updated
* @param {go.Set<go.Group>} colinearWalls The set of colinear walls
* @param {go.Group} w The wall to use as reference for color / thickness when joining the walls.
* If this is not supplied, the first wall in the colinearWalls set is used
* @return {go.Group | null} The new, big wall created by joining colinear walls
*/
private performColinearWallJoining(colinearWalls: go.Set<go.Group>, w?: go.Group): go.Group | null {
const tool: WallReshapingTool = this;
const fp: Floorplan = tool.diagram as Floorplan;
const garbage: go.Set<go.Group> = new go.Set<go.Group>();
// all colinear "walls" must be Walls OR they must all be Room Dividers, they may not be a mix
const cwf = colinearWalls.first();
if (cwf === null) {
return null;
}
if (w === undefined) {
w = cwf;
}
const acceptedCategory: string = cwf.data.category;
colinearWalls.iterator.each(function(cw: go.Group) {
if (cw.data.category !== acceptedCategory) {
return;
}
});
// Find the 2 farthest endpoints in colinear walls set
if (colinearWalls.count > 1) {
let pt1: go.Point | null = null; let pt2: go.Point | null = null;
let farthestDist: number = 0;