UNPKG

glm

Version:

Generalized Linear Models

501 lines (452 loc) 15 kB
/******************************************************************\ For an m-by-n matrix A with m >= n, the Thin Singular Value Decomposition (See: http://en.wikipedia.org/wiki/Singular_value_decomposition#Thin_SVD ) returns: - an m-by-n matrix U with orthogonal columns, - an n-by-n diagonal matrix S, - and an n-by-n orthogonal matrix V such that A = U*S*V'. (here V' indicates the transposed of V) The function thinsvd(A), for m >=n, returns an array containing: - an m x n bidimensional array U with orthogonal columns - an m-sized unidimensional array containing the n singular values, sorted in descending order - an n x n bidimensional orthogonal array containing V (NOTE: _not_ V' as NumPy's linalg.svd(A,full_matrices=0) does!!) If m < n, it returns an array containing: - an m x m bidimensional array containing U - an m-sized unidimensional array containing the n singular values, sorted in descending order - an m x n bidimensional array V with orthogonal columns The Singular Values s[] allow to compute the following values of the input argument: - Two norm l2n = s[0] - Condition number cn = l2n / s[Math.min(m,n)-1] - Rank r = number of singular values larger than cn * eps, (eps being 2.22E-16 i.e. Math.pow(2.0,-52.0) With square random matrices, complexity grows as O(n^3) Decomposing a 100x100 matrix typically takes, with a single-core 1.7GHz Pentium M: - Chrome 3.0.195.27: 880 ms - Firefox 3.5.4: 950 ms - Safari 4.0.3: 1,360 ms - MSIE 8.0: 9,554 ms (and three "slow script" warnings) \******************************************************************/ var hypot = function(a, b) { var at = Math.abs(a); var bt = Math.abs(b); var q; if( at > bt ) { q = bt / at; return at * Math.sqrt( 1.0 + q*q ); } else { if ( bt > 0.0 ){ q = at / bt; return bt * Math.sqrt( 1.0 + q*q ); } else { return 0.0; } } }; exports.GLM.thinsvd = function (A) { // Derived from JAMA public domain code: http://math.nist.gov/javanumerics/jama/ var i, j, k, t, f, g, cs, sn; var lowrise = (A.length < A[0].length); // if true, then rows < columns. in that case, transpose A and exchange U and V on return // make a copy, so the original matrix will be preserved var AT = []; if(lowrise) { for(i=0; i<A[0].length; i++) { AT[i] = []; for(j=0; j<A.length; j++) { AT[i][j] = A[j][i]; // swap rows with columns } } } else { for(i=0; i<A.length; i++) { AT[i] = []; for(j=0; j<A[0].length; j++) { AT[i][j] = A[i][j]; // swap rows with columns } } } A = AT; var m = A.length; var n = A[0].length; var nu = Math.min(m,n); var s = []; var U = []; for(i=0; i<m; i++) { U[i] = []; for(j=0; j<n; j++) { U[i][j] = 0.; } } var V = []; for(i=0; i<n; i++) { V[i] = []; } var e = []; var work = []; var wantu = true; var wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. var nct = Math.min(m-1,n); var nrt = Math.max(0,Math.min(n-2,m)); for (k = 0; k < Math.max(nct,nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (i = k; i < m; i++) { s[k] = hypot(s[k],A[i][k]); } if (s[k] !== 0.0) { if (A[k][k] < 0.0) { s[k] = -s[k]; } for (i = k; i < m; i++) { A[i][k] /= s[k]; } A[k][k] += 1.0; } s[k] = -s[k]; } for (j = k+1; j < n; j++) { if ((k < nct) && (s[k] !== 0.0)) { // Apply the transformation. t = 0; for (i = k; i < m; i++) { t += A[i][k]*A[i][j]; } t = -t/A[k][k]; for (i = k; i < m; i++) { A[i][j] += t*A[i][k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k][j]; } if (wantu && (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (i = k; i < m; i++) { U[i][k] = A[i][k]; } } if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (i = k+1; i < n; i++) { e[k] = hypot(e[k],e[i]); } if (e[k] !== 0.0) { if (e[k+1] < 0.0) { e[k] = -e[k]; } for (i = k+1; i < n; i++) { e[i] /= e[k]; } e[k+1] += 1.0; } e[k] = -e[k]; if ((k+1 < m) && (e[k] !== 0.0)) { // Apply the transformation. for (i = k+1; i < m; i++) { work[i] = 0.0; } for (j = k+1; j < n; j++) { for (i = k+1; i < m; i++) { work[i] += e[j]*A[i][j]; } } for (j = k+1; j < n; j++) { t = -e[j]/e[k+1]; for (i = k+1; i < m; i++) { A[i][j] += t*work[i]; } } } if (wantv) { // Place the transformation in V for subsequent // back multiplication. for (i = k+1; i < n; i++) { V[i][k] = e[i]; } } } } // Set up the final bidiagonal matrix or order p. var p = Math.min(n,m+1); if (nct < n) { s[nct] = A[nct][nct]; } if (m < p) { s[p-1] = 0.0; } if (nrt+1 < p) { e[nrt] = A[nrt][p-1]; } e[p-1] = 0.0; // If required, generate U. if (wantu) { for (j = nct; j < nu; j++) { for (i = 0; i < m; i++) { U[i][j] = 0.0; } U[j][j] = 1.0; } for (k = nct-1; k >= 0; k--) { if (s[k] !== 0.0) { for (j = k+1; j < nu; j++) { t = 0; for (i = k; i < m; i++) { t += U[i][k]*U[i][j]; } t = -t/U[k][k]; for (i = k; i < m; i++) { U[i][j] += t*U[i][k]; } } for (i = k; i < m; i++ ) { U[i][k] = -U[i][k]; } U[k][k] = 1.0 + U[k][k]; for (i = 0; i < k-1; i++) { U[i][k] = 0.0; } } else { for (i = 0; i < m; i++) { U[i][k] = 0.0; } U[k][k] = 1.0; } } } // If required, generate V. if (wantv) { for (k = n-1; k >= 0; k--) { if ((k < nrt) && (e[k] !== 0.0)) { for (j = k+1; j < nu; j++) { t = 0; for (i = k+1; i < n; i++) { t += V[i][k]*V[i][j]; } t = -t/V[k+1][k]; for (i = k+1; i < n; i++) { V[i][j] += t*V[i][k]; } } } for (i = 0; i < n; i++) { V[i][k] = 0.0; } V[k][k] = 1.0; } } // Main iteration loop for the singular values. var pp = p-1; var iter = 0; var totiter = 0; var eps = 2.2205E-16; // Math.pow(2.0,-52.0); var tiny = 1.6034E-291; // Math.pow(2.0,-966.0); while (p > 0) { var kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k<p // kase = 2 if s(k) is negligible and k<p // kase = 3 if e[k-1] is negligible, k<p, and // s(k), ..., s(p) are not negligible (qr step). // kase = 4 if e(p-1) is negligible (convergence). for (k = p-2; k >= -1; k--) { if (k == -1) { break; } if (Math.abs(e[k]) <= tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { var ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) { break; } t = (ks != p ? Math.abs(e[ks]) : 0.0) + (ks != k+1 ? Math.abs(e[ks-1]) : 0.0); if (Math.abs(s[ks]) <= tiny + eps*t) { s[ks] = 0.0; break; } } if (ks == k) { kase = 3; } else if (ks == p-1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. if(kase == 1) { // Deflate negligible s(p). f = e[p-2]; e[p-2] = 0.0; for (j = p-2; j >= k; j--) { t = hypot(s[j],f); cs = s[j]/t; sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][p-1]; V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; V[i][j] = t; } } } } else if (kase == 2) { f = e[k-1]; e[k-1] = 0.0; for (j = k; j < p; j++) { t = hypot(s[j],f); cs = s[j]/t; sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][k-1]; U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; U[i][j] = t; } } } } else if (kase == 3) { // Calculate the shift. var scale = Math.max(Math.max(Math.max(Math.max( Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), Math.abs(s[k])),Math.abs(e[k])); var sp = s[p-1]/scale; var spm1 = s[p-2]/scale; var epm1 = e[p-2]/scale; var sk = s[k]/scale; var ek = e[k]/scale; var b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; var c = (sp*epm1)*(sp*epm1); var shift = 0.0; if ((b !== 0.0) || (c !== 0.0)) { shift = Math.sqrt(b*b + c); if (b < 0.0) { shift = -shift; } shift = c/(b + shift); } f = (sk + sp)*(sk - sp) + shift; g = sk*ek; // Chase zeros. for (j = k; j < p-1; j++) { t = hypot(f,g); cs = f/t; sn = g/t; if (j != k) { e[j-1] = t; } f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][j+1]; V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; V[i][j] = t; } } t = hypot(f,g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < m-1)) { for (i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][j+1]; U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; U[i][j] = t; } } } e[p-2] = f; iter = iter + 1; } else if(kase == 4) { // Convergence. // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) { for (i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) { break; } t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < n-1)) { for (i = 0; i < n; i++) { t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; } } if (wantu && (k < m-1)) { for (i = 0; i < m; i++) { t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; } } k++; } totiter += iter; iter = 0; p--; } } if(lowrise) { return [V,s,U,totiter]; } else { return [U,s,V,totiter]; } /* Two norm: s[0] Two norm condition number: s[0]/s[Math.min(m,n)-1] Rank: function rank (s) { var eps = 2.22E-16; // Math.pow(2.0,-52.0); tol = Math.max(m,n)*s[0]*eps; var r = 0; for (i = 0; i < s.length; i++) { if (s[i] > tol) { r++; } } return r; } */ }