UNPKG

glm

Version:

Generalized Linear Models

964 lines (863 loc) 29.9 kB
(function(exports){ exports.GLM = function (family, regularization) { /* Set defaults */ // default family is Gaussian (linear model) if (!family) { family = exports.GLM.families.Gaussian(); } // default to no regularization (none supported yet) if (!regularization) { regularization = 'none'; } // the returned model var model = {}; model.family = family; model.weights = null; function constantize (exogenous) { if (!exports.GLM.utils.isArray(exogenous[0])) { exogenous = exports.GLM.utils.transpose(exports.GLM.utils.atleast_2d(exogenous)); } return exports.GLM.utils.add_constant(exogenous); } model.fit = function (endogenous, exogenous) { exogenous = constantize(exogenous); model.weights = exports.GLM.optimization.IRLS(endogenous, exogenous, model.family); return this; }; model.predict = function (exogenous) { exogenous = constantize(exogenous) var linear = exports.GLM.utils.dot(exogenous, model.weights); return model.family.fitted(linear); }; return model; } /******************************************************************\ For an m-by-n matrix A with m >= n, the Thin Singular Value Decomposition (See: http://en.wikipedia.org/wiki/Singular_value_decomposition#Thin_SVD ) returns: - an m-by-n matrix U with orthogonal columns, - an n-by-n diagonal matrix S, - and an n-by-n orthogonal matrix V such that A = U*S*V'. (here V' indicates the transposed of V) The function thinsvd(A), for m >=n, returns an array containing: - an m x n bidimensional array U with orthogonal columns - an m-sized unidimensional array containing the n singular values, sorted in descending order - an n x n bidimensional orthogonal array containing V (NOTE: _not_ V' as NumPy's linalg.svd(A,full_matrices=0) does!!) If m < n, it returns an array containing: - an m x m bidimensional array containing U - an m-sized unidimensional array containing the n singular values, sorted in descending order - an m x n bidimensional array V with orthogonal columns The Singular Values s[] allow to compute the following values of the input argument: - Two norm l2n = s[0] - Condition number cn = l2n / s[Math.min(m,n)-1] - Rank r = number of singular values larger than cn * eps, (eps being 2.22E-16 i.e. Math.pow(2.0,-52.0) With square random matrices, complexity grows as O(n^3) Decomposing a 100x100 matrix typically takes, with a single-core 1.7GHz Pentium M: - Chrome 3.0.195.27: 880 ms - Firefox 3.5.4: 950 ms - Safari 4.0.3: 1,360 ms - MSIE 8.0: 9,554 ms (and three "slow script" warnings) \******************************************************************/ var hypot = function(a, b) { var at = Math.abs(a); var bt = Math.abs(b); var q; if( at > bt ) { q = bt / at; return at * Math.sqrt( 1.0 + q*q ); } else { if ( bt > 0.0 ){ q = at / bt; return bt * Math.sqrt( 1.0 + q*q ); } else { return 0.0; } } }; exports.GLM.thinsvd = function (A) { // Derived from JAMA public domain code: http://math.nist.gov/javanumerics/jama/ var i, j, k, t, f, g, cs, sn; var lowrise = (A.length < A[0].length); // if true, then rows < columns. in that case, transpose A and exchange U and V on return // make a copy, so the original matrix will be preserved var AT = []; if(lowrise) { for(i=0; i<A[0].length; i++) { AT[i] = []; for(j=0; j<A.length; j++) { AT[i][j] = A[j][i]; // swap rows with columns } } } else { for(i=0; i<A.length; i++) { AT[i] = []; for(j=0; j<A[0].length; j++) { AT[i][j] = A[i][j]; // swap rows with columns } } } A = AT; var m = A.length; var n = A[0].length; var nu = Math.min(m,n); var s = []; var U = []; for(i=0; i<m; i++) { U[i] = []; for(j=0; j<n; j++) { U[i][j] = 0.; } } var V = []; for(i=0; i<n; i++) { V[i] = []; } var e = []; var work = []; var wantu = true; var wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. var nct = Math.min(m-1,n); var nrt = Math.max(0,Math.min(n-2,m)); for (k = 0; k < Math.max(nct,nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (i = k; i < m; i++) { s[k] = hypot(s[k],A[i][k]); } if (s[k] !== 0.0) { if (A[k][k] < 0.0) { s[k] = -s[k]; } for (i = k; i < m; i++) { A[i][k] /= s[k]; } A[k][k] += 1.0; } s[k] = -s[k]; } for (j = k+1; j < n; j++) { if ((k < nct) && (s[k] !== 0.0)) { // Apply the transformation. t = 0; for (i = k; i < m; i++) { t += A[i][k]*A[i][j]; } t = -t/A[k][k]; for (i = k; i < m; i++) { A[i][j] += t*A[i][k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k][j]; } if (wantu && (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (i = k; i < m; i++) { U[i][k] = A[i][k]; } } if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (i = k+1; i < n; i++) { e[k] = hypot(e[k],e[i]); } if (e[k] !== 0.0) { if (e[k+1] < 0.0) { e[k] = -e[k]; } for (i = k+1; i < n; i++) { e[i] /= e[k]; } e[k+1] += 1.0; } e[k] = -e[k]; if ((k+1 < m) && (e[k] !== 0.0)) { // Apply the transformation. for (i = k+1; i < m; i++) { work[i] = 0.0; } for (j = k+1; j < n; j++) { for (i = k+1; i < m; i++) { work[i] += e[j]*A[i][j]; } } for (j = k+1; j < n; j++) { t = -e[j]/e[k+1]; for (i = k+1; i < m; i++) { A[i][j] += t*work[i]; } } } if (wantv) { // Place the transformation in V for subsequent // back multiplication. for (i = k+1; i < n; i++) { V[i][k] = e[i]; } } } } // Set up the final bidiagonal matrix or order p. var p = Math.min(n,m+1); if (nct < n) { s[nct] = A[nct][nct]; } if (m < p) { s[p-1] = 0.0; } if (nrt+1 < p) { e[nrt] = A[nrt][p-1]; } e[p-1] = 0.0; // If required, generate U. if (wantu) { for (j = nct; j < nu; j++) { for (i = 0; i < m; i++) { U[i][j] = 0.0; } U[j][j] = 1.0; } for (k = nct-1; k >= 0; k--) { if (s[k] !== 0.0) { for (j = k+1; j < nu; j++) { t = 0; for (i = k; i < m; i++) { t += U[i][k]*U[i][j]; } t = -t/U[k][k]; for (i = k; i < m; i++) { U[i][j] += t*U[i][k]; } } for (i = k; i < m; i++ ) { U[i][k] = -U[i][k]; } U[k][k] = 1.0 + U[k][k]; for (i = 0; i < k-1; i++) { U[i][k] = 0.0; } } else { for (i = 0; i < m; i++) { U[i][k] = 0.0; } U[k][k] = 1.0; } } } // If required, generate V. if (wantv) { for (k = n-1; k >= 0; k--) { if ((k < nrt) && (e[k] !== 0.0)) { for (j = k+1; j < nu; j++) { t = 0; for (i = k+1; i < n; i++) { t += V[i][k]*V[i][j]; } t = -t/V[k+1][k]; for (i = k+1; i < n; i++) { V[i][j] += t*V[i][k]; } } } for (i = 0; i < n; i++) { V[i][k] = 0.0; } V[k][k] = 1.0; } } // Main iteration loop for the singular values. var pp = p-1; var iter = 0; var totiter = 0; var eps = 2.2205E-16; // Math.pow(2.0,-52.0); var tiny = 1.6034E-291; // Math.pow(2.0,-966.0); while (p > 0) { var kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k<p // kase = 2 if s(k) is negligible and k<p // kase = 3 if e[k-1] is negligible, k<p, and // s(k), ..., s(p) are not negligible (qr step). // kase = 4 if e(p-1) is negligible (convergence). for (k = p-2; k >= -1; k--) { if (k == -1) { break; } if (Math.abs(e[k]) <= tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { var ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) { break; } t = (ks != p ? Math.abs(e[ks]) : 0.0) + (ks != k+1 ? Math.abs(e[ks-1]) : 0.0); if (Math.abs(s[ks]) <= tiny + eps*t) { s[ks] = 0.0; break; } } if (ks == k) { kase = 3; } else if (ks == p-1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. if(kase == 1) { // Deflate negligible s(p). f = e[p-2]; e[p-2] = 0.0; for (j = p-2; j >= k; j--) { t = hypot(s[j],f); cs = s[j]/t; sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][p-1]; V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; V[i][j] = t; } } } } else if (kase == 2) { f = e[k-1]; e[k-1] = 0.0; for (j = k; j < p; j++) { t = hypot(s[j],f); cs = s[j]/t; sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][k-1]; U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; U[i][j] = t; } } } } else if (kase == 3) { // Calculate the shift. var scale = Math.max(Math.max(Math.max(Math.max( Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), Math.abs(s[k])),Math.abs(e[k])); var sp = s[p-1]/scale; var spm1 = s[p-2]/scale; var epm1 = e[p-2]/scale; var sk = s[k]/scale; var ek = e[k]/scale; var b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; var c = (sp*epm1)*(sp*epm1); var shift = 0.0; if ((b !== 0.0) || (c !== 0.0)) { shift = Math.sqrt(b*b + c); if (b < 0.0) { shift = -shift; } shift = c/(b + shift); } f = (sk + sp)*(sk - sp) + shift; g = sk*ek; // Chase zeros. for (j = k; j < p-1; j++) { t = hypot(f,g); cs = f/t; sn = g/t; if (j != k) { e[j-1] = t; } f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][j+1]; V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; V[i][j] = t; } } t = hypot(f,g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < m-1)) { for (i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][j+1]; U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; U[i][j] = t; } } } e[p-2] = f; iter = iter + 1; } else if(kase == 4) { // Convergence. // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) { for (i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) { break; } t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < n-1)) { for (i = 0; i < n; i++) { t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; } } if (wantu && (k < m-1)) { for (i = 0; i < m; i++) { t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; } } k++; } totiter += iter; iter = 0; p--; } } if(lowrise) { return [V,s,U,totiter]; } else { return [U,s,V,totiter]; } /* Two norm: s[0] Two norm condition number: s[0]/s[Math.min(m,n)-1] Rank: function rank (s) { var eps = 2.22E-16; // Math.pow(2.0,-52.0); tol = Math.max(m,n)*s[0]*eps; var r = 0; for (i = 0; i < s.length; i++) { if (s[i] > tol) { r++; } } return r; } */ } exports.GLM.version = "1.0.0"; exports.GLM.testing = exports.GLM.testing || {}; exports.GLM.testing.arrayEqual = function (lhs, rhs) { if (lhs.length != rhs.length) { return false;} for (var i = 0; i < lhs.length; i++) { if (lhs[i] != rhs[i]) { return false; } } return true; }; exports.GLM.testing.fuzzyArrayEqual = function (lhs, rhs, tolerance) { if (!tolerance) { tolerance = 1e-4; } if (!exports.GLM.testing.arrayEqual(exports.GLM.utils.shape(lhs), exports.GLM.utils.shape(rhs))) { return false; } if (exports.GLM.utils.isArray(lhs[0])) { for (var i = 0; i < lhs.length; i++) { if (!exports.GLM.testing.fuzzyArrayEqual(lhs[i], rhs[i], tolerance)) { return false; } } } else { for (var i = 0; i < lhs.length; i++) { if (Math.abs(lhs[i] - rhs[i]) > tolerance) { return false; } } } return true; }; exports.GLM.utils = exports.GLM.utils || {}; exports.GLM.utils.mean = function (vector) { var sum = 0.0; for (var i = 0; i < vector.length; i++) { sum += vector[i]; } return sum / vector.length; }; exports.GLM.utils.checkConvergence = function (newDev, oldDev, iterations, maxIterations) { var tol = 1e-8; return (oldDev != null && (Math.abs(newDev - oldDev) < tol)) || (iterations > maxIterations); }; exports.GLM.utils.softThreshold = function (z, gamma) { var z_abs = Math.abs(z); if (gamma < z_abs) { if (z > 0) { return z - gamma; } else { return z + gamma; } } else { return 0; } }; exports.GLM.utils.makeArray = function (n_zeros, initialValue) { var vector = []; for (var i = 0; i < n_zeros; i++) { vector.push(exports.GLM.utils.clone(initialValue)); } return vector; }; exports.GLM.utils.zeros = function (n_zeros) { var currentFold; if (exports.GLM.utils.isArray(n_zeros)) { currentFold = exports.GLM.utils.makeArray(n_zeros[0], 0); for (var i = 1; i < n_zeros.length; i++) { currentFold = exports.GLM.utils.makeArray(n_zeros[i], currentFold); } } else { currentFold = exports.GLM.utils.makeArray(n_zeros, 0); } return currentFold; }; exports.GLM.utils.map = function (ary, fn) { var out = []; for (var i = 0; i < ary.length; i++) { out.push(fn(ary[i], i)); } return out; }; exports.GLM.utils.isArray = function (potentialArray) { return potentialArray.constructor == Array; }; exports.GLM.utils.atleast_2d = function (A) { // will make sure JS array is at least 2 dimensional // assumption is that 1-d vectors are column vectors if (exports.GLM.utils.isArray(A[0])) { return A; } else { return [A]; } }; exports.GLM.utils.add_constant = function (ary) { exports.GLM.utils.map(ary, function (x) { x.push(1);}); return ary; }; exports.GLM.utils.dot = function (a, b) { var r, aIsM = exports.GLM.utils.isArray(a[0]), bIsM = exports.GLM.utils.isArray(b[0]), n_rows = a.length, n_columns = b[0].length; if (aIsM & bIsM) { // both matrices r = exports.GLM.utils.zeros([n_columns, n_rows]); for (var i = 0; i < n_rows; i++) { for (var j = 0; j < n_columns; j++) { for (var k = 0; k < b.length; k++) { r[i][j] += a[i][k] * b[k][j]; } } } return r; } else if (aIsM) { return exports.GLM.utils.transpose(exports.GLM.utils.dot(a, exports.GLM.utils.transpose([b])))[0]; } else if (bIsM) { return exports.GLM.utils.dot([a], b); } else { r = 0.0; for (var i = 0; i < a.length; i++) { r += a[i] * b[i]; } return r; } }; exports.GLM.utils.shape = function (A) { if (exports.GLM.utils.isArray(A[0])) { return [A.length, A[0].length]; } else { return [A.length]; } }; exports.GLM.utils.transpose = function (A) { var r = []; A = exports.GLM.utils.atleast_2d(A); for (var i = 0; i < A[0].length; i++) { r[i] = exports.GLM.utils.zeros(A.length); } for (var i = 0; i < A.length; i++) { for (var j = 0; j < A[0].length; j++) { r[j][i] = A[i][j]; } } return r; }; exports.GLM.utils.identity = function (size) { var r = exports.GLM.utils.makeArray(size, exports.GLM.utils.makeArray(size, 0)); for (var i = 0; i < size; i++) { r[i][i] = 1; } return r; }; exports.GLM.utils.clone = function (obj) { if (null == obj || "object" != typeof obj) return obj; var copy = obj.constructor(); for (var attr in obj) { if (obj.hasOwnProperty(attr)) { copy[attr] = obj[attr]; } } return copy; }; exports.GLM.utils.mul = function (A, B) { return exports.GLM.utils.map(A, function (a, i) { return a * B[i]; }); }; exports.GLM.utils.inverse = function (matrix) { // taken from wikipedia var dimension = matrix.length, inverse = exports.GLM.utils.zeros([dimension, dimension]); for (var i = 0; i < dimension; i++) { for (var j = 0; j < dimension; j++) { inverse[i][j] = 0; } } for (var i = 0; i < dimension; i++) { inverse[i][i] = 1; } for (var k = 0; k < dimension; k++) { for (var i = k; i < dimension; i++) { var val = matrix[i][k]; for (var j = k; j < dimension; j++) { matrix[i][j] /= val; } for (var j = 0; j < dimension; j++) { inverse[i][j] /= val; } } for (var i = k + 1; i < dimension; i++) { for (var j = k; j < dimension; j++) { matrix[i][j] -= matrix[k][j]; } for (var j = 0; j < dimension; j++) { inverse[i][j] -= inverse[k][j]; } } } for (var i = dimension - 2; i >= 0; i--) { for (var j = dimension - 1; j > i; j--) { for (var k = 0; k < dimension; k++) { inverse[i][k] -= matrix[i][j] * inverse[j][k]; } for (var k = 0; k < dimension; k++) { matrix[i][k] -= matrix[i][j] * matrix[j][k]; } } } return inverse; }; exports.GLM.utils.linspace = function (lower, upper, number_of_steps) { var linear_array = [], step_size = (upper + 0.0 - lower) / number_of_steps; for (var i = 0; i < number_of_steps; i++) { linear_array.push(lower + i * step_size); } return linear_array; } exports.GLM.families = exports.GLM.families || {}; exports.GLM.families.Binomial = function (link) { // default to logit if (!link) { link = exports.GLM.links.Logit(); } model = {}; model.initialMu = function (y) { var init = []; for (var i = 0; i < y.length; i++) { init.push((y[i] + 0.5) / 2); } return init; }; model.deviance = function(endogenous, mu) { // formula for binomial deviance // 2 * sum{i \in y,mu}(log(Y/mu) + (n-Y)*log((n-Y)/(n-mu))) var dev = 0.0; for (var i = 0; i < mu.length; i++) { var one = endogenous[i] == 1 ? 1 : 0; dev += one * Math.log(mu[i] + 1e-200) + (1 - one) * Math.log(1 - mu[i] + 1e-200); } return 2 * dev; }; // assign input link function model.link = link; model.predict = function (mu) { return model.link(mu); }; model.weights = function (mu) { function fix(z) { if (z < 1e-10) { return 1e-10; } else { if (z > (1 - 1e-10)) { return 1 - 1e-10; } else { return z; } } } var variance = exports.GLM.utils.map(mu, function(m) { return fix(m) * (1 - fix(m)) ;} ); return exports.GLM.utils.map(model.link.derivative(mu), function (m, i) { return 1.0 / (Math.pow(m, 2) * variance[i] ); }); }; model.fitted = function (eta) { return model.link.inverse(eta); }; return model; }; exports.GLM.families.Gaussian = function (link) { // default to identity link function if (!link) { link = exports.GLM.links.Identity(); } var model = {}; model.deviance = function (endogenous, mu) { var dev = 0.0; for (var i = 0; i < endogenous.length; i++) { dev += Math.pow(endogenous[i] - mu[i], 2); } return dev; }; model.initialMu = function (y) { var y_mean = exports.GLM.utils.mean(y), mu = []; for (var i = 0; i < y.length; i++) { mu.push((y[i] + y_mean) / 2.0); } return mu; }; model.link = link; model.predict = function (mu) { return model.link(mu); }; model.weights = function (mu) { // TODO write test & cleanup var variance = exports.GLM.utils.makeArray(mu.length, 1); return exports.GLM.utils.map(model.link.derivative(mu), function (m, i) { return 1.0 / (Math.pow(m, 2) / variance[i] ); }); }; model.fitted = function (eta) { return model.link.inverse(eta); }; return model; }; exports.GLM.links = exports.GLM.links || {}; var linkBuilder = function (func, inv, deriv) { var f = function (P) { return exports.GLM.utils.map(P, func); } f.inverse = function (P) { return exports.GLM.utils.map(P, inv); } f.derivative = function (P) { return exports.GLM.utils.map(P, deriv); } return f; }; exports.GLM.links.Logit = function () { var f = function (P) { return exports.GLM.utils.map(P, function (p) { return Math.log(p / (1.0 - p)); }) }; f.inverse = function (P) { return exports.GLM.utils.map(P, function (p) { var t = Math.exp(p); return t / (1.0 + t); }); }; f.derivative = function (P) { return exports.GLM.utils.map(P, function (p) { return 1.0 / (p * (1.0 - p)); }); }; return f; }; exports.GLM.links.Power = function (power) { var f = function (P) { return exports.GLM.utils.map(P, function (p) { return Math.pow(p, power); }); } f.inverse = function (P) { return exports.GLM.utils.map(P, function (p) { return Math.pow(p, 1.0 / power); }); } f.derivative = function (P) { return exports.GLM.utils.map(P, function (p) { return power * Math.pow(p, power - 1); }); } return f; }; exports.GLM.links.Identity = function () { return exports.GLM.links.Power(1.0); }; exports.GLM.links.Log = function () { var f = function (P) { return exports.GLM.utils.map(P, Math.log); } f.inverse = function (P) { return exports.GLM.utils.map(P, Math.exp); } f.derivative = function (P) { return exports.GLM.utils.map(P, function (p) { return 1.0 / p; }); } return f; }; exports.GLM.links.NegativeBinomial = function (alpha) { var f = function (P) { return exports.GLM.utils.map(P, function (p) { return Math.log(p / (p + 1.0 / alpha)); }); }; f.inverse = function (P) { return exports.GLM.utils.map(P, function (p) { return Math.exp(p) / (alpha * (1 - Math.exp(p))); }); } f.derivative = function (P) { return exports.GLM.utils.map(P, function (p) { return 1.0 / (p + alpha * Math.pow(p, 2)); }); } return f; }; exports.GLM.optimization = exports.optimization || {}; /* TODO: this is incomplete exports.optimization.CoordinateDescentPenalizedWeightedLeastSquares = function (endogenous, exogenous, gradientFunction, regularizationParameter, elasticnetParameter, maxIterations) { // initialize defaults if (!regularizationParameter) { regularizationParameter = 0.01; } if (!elasticnetParameter) { elasticnetParameter = 0.5; } // defaults to half lasso, half ridge if (!maxIterations) { maxIterations = 1000; } var converged = false, iteration = 0, n_features = endogenous[0].length; weights = exports.GLM.utils.zeros(endogenous[0].length); while (!converged) { var currentFeatureId = iteration % n_features, oldWeights = clone(weights), gradient = gradientFunction(endogenous, exogenous, weights, currentFeatureId, regularizationParameter, elasticnetParameter); // compute gradient along given axis weights[currentFeatureId] = gradient; iteration += 1; converged = exports.GLM.utils.checkConvergence(weights, oldWeights, iteration, maxIterations); } return weights; }; */ exports.GLM.optimization.IRLS = function (endogenous, exogenous, family) { var converged = false, iterations = 0, maxIterations = 5, mu = family.initialMu(endogenous), eta = family.predict(mu), deviance = family.deviance(endogenous, mu), wlsResults = null, dataWeights = exports.GLM.utils.makeArray(endogenous.length, 1); while (!converged) { var weights = exports.GLM.utils.mul(dataWeights, family.weights(mu)); oldDeviance = deviance; var ddot = 0.0, muprime = family.link.derivative(mu); var wlsEndogenous = exports.GLM.utils.map(eta, function(x, i) { return x + muprime[i] * (endogenous[i] - mu[i]); }); wlsResults = exports.GLM.optimization.linearSolve(wlsEndogenous, exogenous, weights); eta = exports.GLM.utils.dot(exogenous, wlsResults); mu = family.fitted(eta); deviance = family.deviance(endogenous, mu); converged = exports.GLM.utils.checkConvergence(deviance, oldDeviance, iterations, maxIterations); iterations += 1; } return wlsResults; }; exports.GLM.optimization.linearSolve = function (A, b, weights) { // linear solver using Moore-Penrose pseudoinverse SVD method function whiten(X, weights) { if (exports.GLM.utils.isArray(X[0])) { // 2d matrix return exports.GLM.utils.map(weights, function (w, i) { return exports.GLM.utils.map(X[i], function(z) { return Math.sqrt(w) * z; }); } ); } else { return exports.GLM.utils.map(weights, function (w, i) { return Math.sqrt(w) * X[i]; }); } } A = whiten(A, weights); b = whiten(b, weights); /* solve Ax=b for x using svd pseudoinverse */ function project_and_invert(V) { var id_matrix = exports.GLM.utils.identity(V.length); for (var i = 0; i < V.length; i++) { id_matrix[i][i] /= V[i]; } return id_matrix; } var decomposition = exports.GLM.thinsvd(exports.GLM.utils.dot(exports.GLM.utils.transpose(b), b)), U = decomposition[0], S_inverse = project_and_invert(decomposition[1]), V = decomposition[2], psuedoinv = exports.GLM.utils.dot(U, exports.GLM.utils.dot(S_inverse, exports.GLM.utils.inverse(V))), solution = exports.GLM.utils.dot(exports.GLM.utils.dot(psuedoinv, exports.GLM.utils.transpose(b)), A); return solution; } })(this);