UNPKG

gif.js

Version:

JavaScript GIF encoding library

432 lines (364 loc) 11.3 kB
/* NeuQuant Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. * See "Kohonen neural networks for optimal colour quantization" * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. * for a discussion of the algorithm. * See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal * in this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons who receive * copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. * * (JavaScript port 2012 by Johan Nordberg) */ var ncycles = 100; // number of learning cycles var netsize = 256; // number of colors used var maxnetpos = netsize - 1; // defs for freq and bias var netbiasshift = 4; // bias for colour values var intbiasshift = 16; // bias for fractions var intbias = (1 << intbiasshift); var gammashift = 10; var gamma = (1 << gammashift); var betashift = 10; var beta = (intbias >> betashift); /* beta = 1/1024 */ var betagamma = (intbias << (gammashift - betashift)); // defs for decreasing radius factor var initrad = (netsize >> 3); // for 256 cols, radius starts var radiusbiasshift = 6; // at 32.0 biased by 6 bits var radiusbias = (1 << radiusbiasshift); var initradius = (initrad * radiusbias); //and decreases by a var radiusdec = 30; // factor of 1/30 each cycle // defs for decreasing alpha factor var alphabiasshift = 10; // alpha starts at 1.0 var initalpha = (1 << alphabiasshift); var alphadec; // biased by 10 bits /* radbias and alpharadbias used for radpower calculation */ var radbiasshift = 8; var radbias = (1 << radbiasshift); var alpharadbshift = (alphabiasshift + radbiasshift); var alpharadbias = (1 << alpharadbshift); // four primes near 500 - assume no image has a length so large that it is // divisible by all four primes var prime1 = 499; var prime2 = 491; var prime3 = 487; var prime4 = 503; var minpicturebytes = (3 * prime4); /* Constructor: NeuQuant Arguments: pixels - array of pixels in RGB format samplefac - sampling factor 1 to 30 where lower is better quality > > pixels = [r, g, b, r, g, b, r, g, b, ..] > */ function NeuQuant(pixels, samplefac) { var network; // int[netsize][4] var netindex; // for network lookup - really 256 // bias and freq arrays for learning var bias; var freq; var radpower; /* Private Method: init sets up arrays */ function init() { network = []; netindex = new Int32Array(256); bias = new Int32Array(netsize); freq = new Int32Array(netsize); radpower = new Int32Array(netsize >> 3); var i, v; for (i = 0; i < netsize; i++) { v = (i << (netbiasshift + 8)) / netsize; network[i] = new Float64Array([v, v, v, 0]); //network[i] = [v, v, v, 0] freq[i] = intbias / netsize; bias[i] = 0; } } /* Private Method: unbiasnet unbiases network to give byte values 0..255 and record position i to prepare for sort */ function unbiasnet() { for (var i = 0; i < netsize; i++) { network[i][0] >>= netbiasshift; network[i][1] >>= netbiasshift; network[i][2] >>= netbiasshift; network[i][3] = i; // record color number } } /* Private Method: altersingle moves neuron *i* towards biased (b,g,r) by factor *alpha* */ function altersingle(alpha, i, b, g, r) { network[i][0] -= (alpha * (network[i][0] - b)) / initalpha; network[i][1] -= (alpha * (network[i][1] - g)) / initalpha; network[i][2] -= (alpha * (network[i][2] - r)) / initalpha; } /* Private Method: alterneigh moves neurons in *radius* around index *i* towards biased (b,g,r) by factor *alpha* */ function alterneigh(radius, i, b, g, r) { var lo = Math.abs(i - radius); var hi = Math.min(i + radius, netsize); var j = i + 1; var k = i - 1; var m = 1; var p, a; while ((j < hi) || (k > lo)) { a = radpower[m++]; if (j < hi) { p = network[j++]; p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } if (k > lo) { p = network[k--]; p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } } } /* Private Method: contest searches for biased BGR values */ function contest(b, g, r) { /* finds closest neuron (min dist) and updates freq finds best neuron (min dist-bias) and returns position for frequently chosen neurons, freq[i] is high and bias[i] is negative bias[i] = gamma * ((1 / netsize) - freq[i]) */ var bestd = ~(1 << 31); var bestbiasd = bestd; var bestpos = -1; var bestbiaspos = bestpos; var i, n, dist, biasdist, betafreq; for (i = 0; i < netsize; i++) { n = network[i]; dist = Math.abs(n[0] - b) + Math.abs(n[1] - g) + Math.abs(n[2] - r); if (dist < bestd) { bestd = dist; bestpos = i; } biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } betafreq = (freq[i] >> betashift); freq[i] -= betafreq; bias[i] += (betafreq << gammashift); } freq[bestpos] += beta; bias[bestpos] -= betagamma; return bestbiaspos; } /* Private Method: inxbuild sorts network and builds netindex[0..255] */ function inxbuild() { var i, j, p, q, smallpos, smallval, previouscol = 0, startpos = 0; for (i = 0; i < netsize; i++) { p = network[i]; smallpos = i; smallval = p[1]; // index on g // find smallest in i..netsize-1 for (j = i + 1; j < netsize; j++) { q = network[j]; if (q[1] < smallval) { // index on g smallpos = j; smallval = q[1]; // index on g } } q = network[smallpos]; // swap p (i) and q (smallpos) entries if (i != smallpos) { j = q[0]; q[0] = p[0]; p[0] = j; j = q[1]; q[1] = p[1]; p[1] = j; j = q[2]; q[2] = p[2]; p[2] = j; j = q[3]; q[3] = p[3]; p[3] = j; } // smallval entry is now in position i if (smallval != previouscol) { netindex[previouscol] = (startpos + i) >> 1; for (j = previouscol + 1; j < smallval; j++) netindex[j] = i; previouscol = smallval; startpos = i; } } netindex[previouscol] = (startpos + maxnetpos) >> 1; for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; // really 256 } /* Private Method: inxsearch searches for BGR values 0..255 and returns a color index */ function inxsearch(b, g, r) { var a, p, dist; var bestd = 1000; // biggest possible dist is 256*3 var best = -1; var i = netindex[g]; // index on g var j = i - 1; // start at netindex[g] and work outwards while ((i < netsize) || (j >= 0)) { if (i < netsize) { p = network[i]; dist = p[1] - g; // inx key if (dist >= bestd) i = netsize; // stop iter else { i++; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } if (j >= 0) { p = network[j]; dist = g - p[1]; // inx key - reverse dif if (dist >= bestd) j = -1; // stop iter else { j--; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } } return best; } /* Private Method: learn "Main Learning Loop" */ function learn() { var i; var lengthcount = pixels.length; var alphadec = 30 + ((samplefac - 1) / 3); var samplepixels = lengthcount / (3 * samplefac); var delta = ~~(samplepixels / ncycles); var alpha = initalpha; var radius = initradius; var rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad)); var step; if (lengthcount < minpicturebytes) { samplefac = 1; step = 3; } else if ((lengthcount % prime1) !== 0) { step = 3 * prime1; } else if ((lengthcount % prime2) !== 0) { step = 3 * prime2; } else if ((lengthcount % prime3) !== 0) { step = 3 * prime3; } else { step = 3 * prime4; } var b, g, r, j; var pix = 0; // current pixel i = 0; while (i < samplepixels) { b = (pixels[pix] & 0xff) << netbiasshift; g = (pixels[pix + 1] & 0xff) << netbiasshift; r = (pixels[pix + 2] & 0xff) << netbiasshift; j = contest(b, g, r); altersingle(alpha, j, b, g, r); if (rad !== 0) alterneigh(rad, j, b, g, r); // alter neighbours pix += step; if (pix >= lengthcount) pix -= lengthcount; i++; if (delta === 0) delta = 1; if (i % delta === 0) { alpha -= alpha / alphadec; radius -= radius / radiusdec; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad)); } } } /* Method: buildColormap 1. initializes network 2. trains it 3. removes misconceptions 4. builds colorindex */ function buildColormap() { init(); learn(); unbiasnet(); inxbuild(); } this.buildColormap = buildColormap; /* Method: getColormap builds colormap from the index returns array in the format: > > [r, g, b, r, g, b, r, g, b, ..] > */ function getColormap() { var map = []; var index = []; for (var i = 0; i < netsize; i++) index[network[i][3]] = i; var k = 0; for (var l = 0; l < netsize; l++) { var j = index[l]; map[k++] = (network[j][0]); map[k++] = (network[j][1]); map[k++] = (network[j][2]); } return map; } this.getColormap = getColormap; /* Method: lookupRGB looks for the closest *r*, *g*, *b* color in the map and returns its index */ this.lookupRGB = inxsearch; } module.exports = NeuQuant;