gif.js
Version:
JavaScript GIF encoding library
432 lines (364 loc) • 11.3 kB
JavaScript
/* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
*
* Copyright (c) 1994 Anthony Dekker
*
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
* See "Kohonen neural networks for optimal colour quantization"
* in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
* for a discussion of the algorithm.
* See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
*
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal
* in this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons who receive
* copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*
* (JavaScript port 2012 by Johan Nordberg)
*/
var ncycles = 100; // number of learning cycles
var netsize = 256; // number of colors used
var maxnetpos = netsize - 1;
// defs for freq and bias
var netbiasshift = 4; // bias for colour values
var intbiasshift = 16; // bias for fractions
var intbias = (1 << intbiasshift);
var gammashift = 10;
var gamma = (1 << gammashift);
var betashift = 10;
var beta = (intbias >> betashift); /* beta = 1/1024 */
var betagamma = (intbias << (gammashift - betashift));
// defs for decreasing radius factor
var initrad = (netsize >> 3); // for 256 cols, radius starts
var radiusbiasshift = 6; // at 32.0 biased by 6 bits
var radiusbias = (1 << radiusbiasshift);
var initradius = (initrad * radiusbias); //and decreases by a
var radiusdec = 30; // factor of 1/30 each cycle
// defs for decreasing alpha factor
var alphabiasshift = 10; // alpha starts at 1.0
var initalpha = (1 << alphabiasshift);
var alphadec; // biased by 10 bits
/* radbias and alpharadbias used for radpower calculation */
var radbiasshift = 8;
var radbias = (1 << radbiasshift);
var alpharadbshift = (alphabiasshift + radbiasshift);
var alpharadbias = (1 << alpharadbshift);
// four primes near 500 - assume no image has a length so large that it is
// divisible by all four primes
var prime1 = 499;
var prime2 = 491;
var prime3 = 487;
var prime4 = 503;
var minpicturebytes = (3 * prime4);
/*
Constructor: NeuQuant
Arguments:
pixels - array of pixels in RGB format
samplefac - sampling factor 1 to 30 where lower is better quality
>
> pixels = [r, g, b, r, g, b, r, g, b, ..]
>
*/
function NeuQuant(pixels, samplefac) {
var network; // int[netsize][4]
var netindex; // for network lookup - really 256
// bias and freq arrays for learning
var bias;
var freq;
var radpower;
/*
Private Method: init
sets up arrays
*/
function init() {
network = [];
netindex = new Int32Array(256);
bias = new Int32Array(netsize);
freq = new Int32Array(netsize);
radpower = new Int32Array(netsize >> 3);
var i, v;
for (i = 0; i < netsize; i++) {
v = (i << (netbiasshift + 8)) / netsize;
network[i] = new Float64Array([v, v, v, 0]);
//network[i] = [v, v, v, 0]
freq[i] = intbias / netsize;
bias[i] = 0;
}
}
/*
Private Method: unbiasnet
unbiases network to give byte values 0..255 and record position i to prepare for sort
*/
function unbiasnet() {
for (var i = 0; i < netsize; i++) {
network[i][0] >>= netbiasshift;
network[i][1] >>= netbiasshift;
network[i][2] >>= netbiasshift;
network[i][3] = i; // record color number
}
}
/*
Private Method: altersingle
moves neuron *i* towards biased (b,g,r) by factor *alpha*
*/
function altersingle(alpha, i, b, g, r) {
network[i][0] -= (alpha * (network[i][0] - b)) / initalpha;
network[i][1] -= (alpha * (network[i][1] - g)) / initalpha;
network[i][2] -= (alpha * (network[i][2] - r)) / initalpha;
}
/*
Private Method: alterneigh
moves neurons in *radius* around index *i* towards biased (b,g,r) by factor *alpha*
*/
function alterneigh(radius, i, b, g, r) {
var lo = Math.abs(i - radius);
var hi = Math.min(i + radius, netsize);
var j = i + 1;
var k = i - 1;
var m = 1;
var p, a;
while ((j < hi) || (k > lo)) {
a = radpower[m++];
if (j < hi) {
p = network[j++];
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
}
if (k > lo) {
p = network[k--];
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
}
}
}
/*
Private Method: contest
searches for biased BGR values
*/
function contest(b, g, r) {
/*
finds closest neuron (min dist) and updates freq
finds best neuron (min dist-bias) and returns position
for frequently chosen neurons, freq[i] is high and bias[i] is negative
bias[i] = gamma * ((1 / netsize) - freq[i])
*/
var bestd = ~(1 << 31);
var bestbiasd = bestd;
var bestpos = -1;
var bestbiaspos = bestpos;
var i, n, dist, biasdist, betafreq;
for (i = 0; i < netsize; i++) {
n = network[i];
dist = Math.abs(n[0] - b) + Math.abs(n[1] - g) + Math.abs(n[2] - r);
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (freq[i] >> betashift);
freq[i] -= betafreq;
bias[i] += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return bestbiaspos;
}
/*
Private Method: inxbuild
sorts network and builds netindex[0..255]
*/
function inxbuild() {
var i, j, p, q, smallpos, smallval, previouscol = 0, startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[1]; // index on g
// find smallest in i..netsize-1
for (j = i + 1; j < netsize; j++) {
q = network[j];
if (q[1] < smallval) { // index on g
smallpos = j;
smallval = q[1]; // index on g
}
}
q = network[smallpos];
// swap p (i) and q (smallpos) entries
if (i != smallpos) {
j = q[0]; q[0] = p[0]; p[0] = j;
j = q[1]; q[1] = p[1]; p[1] = j;
j = q[2]; q[2] = p[2]; p[2] = j;
j = q[3]; q[3] = p[3]; p[3] = j;
}
// smallval entry is now in position i
if (smallval != previouscol) {
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++)
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++)
netindex[j] = maxnetpos; // really 256
}
/*
Private Method: inxsearch
searches for BGR values 0..255 and returns a color index
*/
function inxsearch(b, g, r) {
var a, p, dist;
var bestd = 1000; // biggest possible dist is 256*3
var best = -1;
var i = netindex[g]; // index on g
var j = i - 1; // start at netindex[g] and work outwards
while ((i < netsize) || (j >= 0)) {
if (i < netsize) {
p = network[i];
dist = p[1] - g; // inx key
if (dist >= bestd) i = netsize; // stop iter
else {
i++;
if (dist < 0) dist = -dist;
a = p[0] - b; if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r; if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[1]; // inx key - reverse dif
if (dist >= bestd) j = -1; // stop iter
else {
j--;
if (dist < 0) dist = -dist;
a = p[0] - b; if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r; if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return best;
}
/*
Private Method: learn
"Main Learning Loop"
*/
function learn() {
var i;
var lengthcount = pixels.length;
var alphadec = 30 + ((samplefac - 1) / 3);
var samplepixels = lengthcount / (3 * samplefac);
var delta = ~~(samplepixels / ncycles);
var alpha = initalpha;
var radius = initradius;
var rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (i = 0; i < rad; i++)
radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
var step;
if (lengthcount < minpicturebytes) {
samplefac = 1;
step = 3;
} else if ((lengthcount % prime1) !== 0) {
step = 3 * prime1;
} else if ((lengthcount % prime2) !== 0) {
step = 3 * prime2;
} else if ((lengthcount % prime3) !== 0) {
step = 3 * prime3;
} else {
step = 3 * prime4;
}
var b, g, r, j;
var pix = 0; // current pixel
i = 0;
while (i < samplepixels) {
b = (pixels[pix] & 0xff) << netbiasshift;
g = (pixels[pix + 1] & 0xff) << netbiasshift;
r = (pixels[pix + 2] & 0xff) << netbiasshift;
j = contest(b, g, r);
altersingle(alpha, j, b, g, r);
if (rad !== 0) alterneigh(rad, j, b, g, r); // alter neighbours
pix += step;
if (pix >= lengthcount) pix -= lengthcount;
i++;
if (delta === 0) delta = 1;
if (i % delta === 0) {
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (j = 0; j < rad; j++)
radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
}
}
}
/*
Method: buildColormap
1. initializes network
2. trains it
3. removes misconceptions
4. builds colorindex
*/
function buildColormap() {
init();
learn();
unbiasnet();
inxbuild();
}
this.buildColormap = buildColormap;
/*
Method: getColormap
builds colormap from the index
returns array in the format:
>
> [r, g, b, r, g, b, r, g, b, ..]
>
*/
function getColormap() {
var map = [];
var index = [];
for (var i = 0; i < netsize; i++)
index[network[i][3]] = i;
var k = 0;
for (var l = 0; l < netsize; l++) {
var j = index[l];
map[k++] = (network[j][0]);
map[k++] = (network[j][1]);
map[k++] = (network[j][2]);
}
return map;
}
this.getColormap = getColormap;
/*
Method: lookupRGB
looks for the closest *r*, *g*, *b* color in the map and
returns its index
*/
this.lookupRGB = inxsearch;
}
module.exports = NeuQuant;