genkitx-openai
Version:
Firebase Genkit AI framework plugin for OpenAI APIs.
165 lines • 5.58 kB
JavaScript
var __defProp = Object.defineProperty;
var __defProps = Object.defineProperties;
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
var __getOwnPropDescs = Object.getOwnPropertyDescriptors;
var __getOwnPropNames = Object.getOwnPropertyNames;
var __getOwnPropSymbols = Object.getOwnPropertySymbols;
var __hasOwnProp = Object.prototype.hasOwnProperty;
var __propIsEnum = Object.prototype.propertyIsEnumerable;
var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value;
var __spreadValues = (a, b) => {
for (var prop in b || (b = {}))
if (__hasOwnProp.call(b, prop))
__defNormalProp(a, prop, b[prop]);
if (__getOwnPropSymbols)
for (var prop of __getOwnPropSymbols(b)) {
if (__propIsEnum.call(b, prop))
__defNormalProp(a, prop, b[prop]);
}
return a;
};
var __spreadProps = (a, b) => __defProps(a, __getOwnPropDescs(b));
var __export = (target, all) => {
for (var name in all)
__defProp(target, name, { get: all[name], enumerable: true });
};
var __copyProps = (to, from, except, desc) => {
if (from && typeof from === "object" || typeof from === "function") {
for (let key of __getOwnPropNames(from))
if (!__hasOwnProp.call(to, key) && key !== except)
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
}
return to;
};
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
var __async = (__this, __arguments, generator) => {
return new Promise((resolve, reject) => {
var fulfilled = (value) => {
try {
step(generator.next(value));
} catch (e) {
reject(e);
}
};
var rejected = (value) => {
try {
step(generator.throw(value));
} catch (e) {
reject(e);
}
};
var step = (x) => x.done ? resolve(x.value) : Promise.resolve(x.value).then(fulfilled, rejected);
step((generator = generator.apply(__this, __arguments)).next());
});
};
var whisper_exports = {};
__export(whisper_exports, {
Whisper1ConfigSchema: () => Whisper1ConfigSchema,
whisper1: () => whisper1,
whisper1Model: () => whisper1Model
});
module.exports = __toCommonJS(whisper_exports);
var import_genkit = require("genkit");
var import_model = require("genkit/model");
const Whisper1ConfigSchema = import_genkit.GenerationCommonConfigSchema.extend({
language: import_genkit.z.string().optional(),
timestamp_granularities: import_genkit.z.array(import_genkit.z.enum(["word", "segment"])).optional(),
response_format: import_genkit.z.enum(["json", "text", "srt", "verbose_json", "vtt"]).optional()
});
const whisper1 = (0, import_model.modelRef)({
name: "openai/whisper-1",
info: {
label: "OpenAI - Whisper",
supports: {
media: true,
output: ["text", "json"],
multiturn: false,
systemRole: false,
tools: false
}
},
configSchema: Whisper1ConfigSchema
});
function toWhisper1Request(request) {
var _a, _b, _c, _d, _e, _f;
const message = new import_genkit.Message(request.messages[0]);
const media = message.media;
if (!(media == null ? void 0 : media.url)) {
throw new Error("No media found in the request");
}
const mediaBuffer = Buffer.from(
media.url.slice(media.url.indexOf(",") + 1),
"base64"
);
const mediaFile = new File([mediaBuffer], "input", {
type: (_a = media.contentType) != null ? _a : media.url.slice("data:".length, media.url.indexOf(";"))
});
const options = {
model: "whisper-1",
file: mediaFile,
prompt: message.text,
temperature: (_b = request.config) == null ? void 0 : _b.temperature,
language: (_c = request.config) == null ? void 0 : _c.language,
timestamp_granularities: (_d = request.config) == null ? void 0 : _d.timestamp_granularities
};
const outputFormat = (_e = request.output) == null ? void 0 : _e.format;
const customFormat = (_f = request.config) == null ? void 0 : _f.response_format;
if (outputFormat && customFormat) {
if (outputFormat === "json" && customFormat !== "json" && customFormat !== "verbose_json") {
throw new Error(
`Custom response format ${customFormat} is not compatible with output format ${outputFormat}`
);
}
}
if (outputFormat === "media") {
throw new Error(`Output format ${outputFormat} is not supported.`);
}
options.response_format = customFormat || outputFormat || "text";
for (const k in options) {
if (options[k] === void 0) {
delete options[k];
}
}
return options;
}
function toGenerateResponse(result) {
return {
candidates: [
{
index: 0,
finishReason: "stop",
message: {
role: "model",
content: [
{
text: typeof result === "string" ? result : result.text
}
]
}
}
]
};
}
function whisper1Model(ai, client) {
return ai.defineModel(
__spreadProps(__spreadValues({
name: whisper1.name
}, whisper1.info), {
configSchema: whisper1.configSchema
}),
(request) => __async(this, null, function* () {
const result = yield client.audio.transcriptions.create(
toWhisper1Request(request)
);
return toGenerateResponse(result);
})
);
}
// Annotate the CommonJS export names for ESM import in node:
0 && (module.exports = {
Whisper1ConfigSchema,
whisper1,
whisper1Model
});
//# sourceMappingURL=whisper.js.map
;