genkitx-openai
Version:
Firebase Genkit AI framework plugin for OpenAI APIs.
555 lines • 15.3 kB
JavaScript
import {
__async,
__forAwait,
__spreadProps,
__spreadValues
} from "./chunk-MLCSNVBT.mjs";
import { Message, GenerationCommonConfigSchema, z } from "genkit";
import { modelRef } from "genkit/model";
const MODELS_SUPPORTING_OPENAI_RESPONSE_FORMAT = [
"gpt-4.5-preview",
"gpt-4o",
"gpt-4o-2024-05-13",
"gpt-4o-mini",
"gpt-4o-mini-2024-07-18",
"gpt-4-turbo",
"gpt-4-turbo-2024-04-09",
"gpt-4-turbo-preview",
"gpt-4-0125-preview",
"gpt-4-1106-preview",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo",
"gpt-3.5-turbo-1106",
"o1-preview"
];
const OpenAiConfigSchema = GenerationCommonConfigSchema.extend({
frequencyPenalty: z.number().min(-2).max(2).optional(),
logitBias: z.record(z.string(), z.number().min(-100).max(100)).optional(),
logProbs: z.boolean().optional(),
presencePenalty: z.number().min(-2).max(2).optional(),
seed: z.number().int().optional(),
topLogProbs: z.number().int().min(0).max(20).optional(),
user: z.string().optional(),
visualDetailLevel: z.enum(["auto", "low", "high"]).optional()
});
const gpt45 = modelRef({
name: "openai/gpt-4.5",
info: {
versions: ["gpt-4.5-preview"],
label: "OpenAI - GPT-4.5",
supports: {
multiturn: true,
tools: true,
media: true,
systemRole: true,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const gpt4o = modelRef({
name: "openai/gpt-4o",
info: {
versions: ["gpt-4o", "gpt-4o-2024-05-13"],
label: "OpenAI - GPT-4o",
supports: {
multiturn: true,
tools: true,
media: true,
systemRole: true,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const o1Preview = modelRef({
name: "openai/o1-preview",
info: {
versions: ["o1-preview"],
label: "OpenAI - o1 Preview",
supports: {
multiturn: true,
tools: true,
media: false,
systemRole: false,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const o1Mini = modelRef({
name: "openai/o1",
info: {
versions: ["o1-mini"],
label: "OpenAI - o1 Mini",
supports: {
multiturn: true,
tools: true,
media: false,
systemRole: false,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const o1 = modelRef({
name: "openai/o1",
info: {
versions: ["o1"],
label: "OpenAI - o1",
supports: {
multiturn: true,
tools: true,
media: false,
systemRole: false,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const o3Mini = modelRef({
name: "openai/o3-mini",
info: {
versions: ["o3-mini"],
label: "OpenAI - o3 Mini",
supports: {
multiturn: true,
tools: true,
media: false,
systemRole: false,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const gpt4oMini = modelRef({
name: "openai/gpt-4o-mini",
info: {
versions: ["gpt-4o-mini", "gpt-4o-mini-2024-07-18"],
label: "OpenAI - GPT-4o mini",
supports: {
multiturn: true,
tools: true,
media: true,
systemRole: true,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const gpt4Turbo = modelRef({
name: "openai/gpt-4-turbo",
info: {
versions: [
"gpt-4-turbo",
"gpt-4-turbo-2024-04-09",
"gpt-4-turbo-preview",
"gpt-4-0125-preview",
"gpt-4-1106-preview"
],
label: "OpenAI - GPT-4 Turbo",
supports: {
multiturn: true,
tools: true,
media: true,
systemRole: true,
output: ["text", "json"]
}
},
configSchema: OpenAiConfigSchema
});
const gpt4Vision = modelRef({
name: "openai/gpt-4-vision",
info: {
versions: ["gpt-4-vision-preview", "gpt-4-1106-vision-preview"],
label: "OpenAI - GPT-4 Vision",
supports: {
multiturn: true,
tools: false,
media: true,
systemRole: true,
output: ["text"]
}
},
configSchema: OpenAiConfigSchema
});
const gpt4 = modelRef({
name: "openai/gpt-4",
info: {
versions: ["gpt-4", "gpt-4-0613", "gpt-4-32k", "gpt-4-32k-0613"],
label: "OpenAI - GPT-4",
supports: {
multiturn: true,
tools: true,
media: false,
systemRole: true,
output: ["text"]
}
},
configSchema: OpenAiConfigSchema
});
const gpt35Turbo = modelRef({
name: "openai/gpt-3.5-turbo",
info: {
versions: ["gpt-3.5-turbo-0125", "gpt-3.5-turbo", "gpt-3.5-turbo-1106"],
label: "OpenAI - GPT-3.5 Turbo",
supports: {
multiturn: true,
tools: true,
media: false,
systemRole: true,
output: ["json", "text"]
}
},
configSchema: OpenAiConfigSchema
});
const SUPPORTED_GPT_MODELS = {
"gpt-4.5": gpt45,
"gpt-4o": gpt4o,
"gpt-4o-mini": gpt4oMini,
"gpt-4-turbo": gpt4Turbo,
"gpt-4-vision": gpt4Vision,
"gpt-4": gpt4,
"gpt-3.5-turbo": gpt35Turbo,
"o1-preview": o1Preview,
o1,
"o1-mini": o1Mini,
"o3-mini": o3Mini
};
function toOpenAIRole(role) {
switch (role) {
case "user":
return "user";
case "model":
return "assistant";
case "system":
return "system";
case "tool":
return "tool";
default:
throw new Error(`role ${role} doesn't map to an OpenAI role.`);
}
}
function toOpenAiTool(tool) {
return {
type: "function",
function: {
name: tool.name,
parameters: tool.inputSchema !== null ? tool.inputSchema : void 0
}
};
}
function toOpenAiTextAndMedia(part, visualDetailLevel) {
if (part.text) {
return {
type: "text",
text: part.text
};
} else if (part.media) {
return {
type: "image_url",
image_url: {
url: part.media.url,
detail: visualDetailLevel
}
};
}
throw Error(
`Unsupported genkit part fields encountered for current message role: ${JSON.stringify(part)}.`
);
}
function toOpenAiMessages(messages, visualDetailLevel = "auto") {
const openAiMsgs = [];
for (const message of messages) {
const msg = new Message(message);
const role = toOpenAIRole(message.role);
switch (role) {
case "user":
const content = msg.content.map(
(part) => toOpenAiTextAndMedia(part, visualDetailLevel)
);
const onlyTextContent = content.some((item) => item.type !== "text");
if (!onlyTextContent) {
content.forEach((item, index) => {
if (item.type === "text") {
openAiMsgs.push({
role,
content: item.text
});
}
});
} else {
openAiMsgs.push({
role,
content
});
}
break;
case "system":
openAiMsgs.push({
role,
content: msg.text
});
break;
case "assistant": {
const toolCalls = msg.content.filter(
(part) => Boolean(part.toolRequest)
).map((part) => {
var _a;
return {
id: (_a = part.toolRequest.ref) != null ? _a : "",
type: "function",
function: {
name: part.toolRequest.name,
arguments: JSON.stringify(part.toolRequest.input)
}
};
});
if (toolCalls.length > 0) {
openAiMsgs.push({
role,
tool_calls: toolCalls
});
} else {
openAiMsgs.push({
role,
content: msg.text
});
}
break;
}
case "tool": {
const toolResponseParts = msg.toolResponseParts();
toolResponseParts.map((part) => {
var _a;
openAiMsgs.push({
role,
tool_call_id: (_a = part.toolResponse.ref) != null ? _a : "",
content: typeof part.toolResponse.output === "string" ? part.toolResponse.output : JSON.stringify(part.toolResponse.output)
});
});
break;
}
}
}
return openAiMsgs;
}
const finishReasonMap = {
length: "length",
stop: "stop",
tool_calls: "stop",
content_filter: "blocked"
};
function fromOpenAiToolCall(toolCall, choice) {
if (!toolCall.function) {
throw Error(
`Unexpected openAI chunk choice. tool_calls was provided but one or more tool_calls is missing.`
);
}
const f = toolCall.function;
if (choice.finish_reason === "tool_calls") {
return {
toolRequest: {
name: f.name,
ref: toolCall.id,
input: f.arguments ? JSON.parse(f.arguments) : f.arguments
}
};
} else {
return {
toolRequest: {
name: f.name,
ref: toolCall.id,
input: ""
}
};
}
}
function fromOpenAiChoice(choice, jsonMode = false) {
var _a;
const toolRequestParts = (_a = choice.message.tool_calls) == null ? void 0 : _a.map(
(toolCall) => fromOpenAiToolCall(toolCall, choice)
);
return {
index: choice.index,
finishReason: finishReasonMap[choice.finish_reason] || "other",
message: {
role: "model",
content: toolRequestParts ? (
// Note: Not sure why I have to cast here exactly.
// Otherwise it thinks toolRequest must be 'undefined' if provided
toolRequestParts
) : [
jsonMode ? { data: JSON.parse(choice.message.content) } : { text: choice.message.content }
]
},
custom: {}
};
}
function fromOpenAiChunkChoice(choice, jsonMode = false) {
var _a;
const toolRequestParts = (_a = choice.delta.tool_calls) == null ? void 0 : _a.map(
(toolCall) => fromOpenAiToolCall(toolCall, choice)
);
return {
index: choice.index,
finishReason: choice.finish_reason ? finishReasonMap[choice.finish_reason] || "other" : "unknown",
message: {
role: "model",
content: toolRequestParts ? (
// Note: Not sure why I have to cast here exactly.
// Otherwise it thinks toolRequest must be 'undefined' if provided
toolRequestParts
) : [
jsonMode ? { data: JSON.parse(choice.delta.content) } : { text: choice.delta.content }
]
},
custom: {}
};
}
function toOpenAiRequestBody(modelName, request) {
var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, _l, _m, _n, _o, _p, _q, _r, _s, _t, _u;
const model = SUPPORTED_GPT_MODELS[modelName];
if (!model) throw new Error(`Unsupported model: ${modelName}`);
const openAiMessages = toOpenAiMessages(
request.messages,
(_a = request.config) == null ? void 0 : _a.visualDetailLevel
);
const mappedModelName = ((_b = request.config) == null ? void 0 : _b.version) || model.version || modelName;
const body = {
model: mappedModelName,
messages: openAiMessages,
temperature: (_c = request.config) == null ? void 0 : _c.temperature,
max_tokens: (_d = request.config) == null ? void 0 : _d.maxOutputTokens,
top_p: (_e = request.config) == null ? void 0 : _e.topP,
stop: (_f = request.config) == null ? void 0 : _f.stopSequences,
frequency_penalty: (_g = request.config) == null ? void 0 : _g.frequencyPenalty,
logit_bias: (_h = request.config) == null ? void 0 : _h.logitBias,
logprobs: (_i = request.config) == null ? void 0 : _i.logProbs,
// logprobs not snake case!
presence_penalty: (_j = request.config) == null ? void 0 : _j.presencePenalty,
seed: (_k = request.config) == null ? void 0 : _k.seed,
top_logprobs: (_l = request.config) == null ? void 0 : _l.topLogProbs,
// logprobs not snake case!
user: (_m = request.config) == null ? void 0 : _m.user,
tools: (_n = request.tools) == null ? void 0 : _n.map(toOpenAiTool),
n: request.candidates
};
const response_format = (_o = request.output) == null ? void 0 : _o.format;
if (response_format && MODELS_SUPPORTING_OPENAI_RESPONSE_FORMAT.includes(mappedModelName)) {
if (response_format === "json" && ((_r = (_q = (_p = model.info) == null ? void 0 : _p.supports) == null ? void 0 : _q.output) == null ? void 0 : _r.includes("json"))) {
body.response_format = {
type: "json_object"
};
} else if (response_format === "text" && ((_u = (_t = (_s = model.info) == null ? void 0 : _s.supports) == null ? void 0 : _t.output) == null ? void 0 : _u.includes("text"))) {
body.response_format = {
type: "text"
};
} else {
throw new Error(
`${response_format} format is not supported for GPT models currently`
);
}
}
for (const key in body) {
if (!body[key] || Array.isArray(body[key]) && !body[key].length)
delete body[key];
}
return body;
}
function gptRunner(name, client) {
return (request, streamingCallback) => __async(this, null, function* () {
var _a, _b, _c, _d;
let response;
const body = toOpenAiRequestBody(name, request);
if (streamingCallback) {
const stream = client.beta.chat.completions.stream(__spreadProps(__spreadValues({}, body), {
stream: true
}));
try {
for (var iter = __forAwait(stream), more, temp, error; more = !(temp = yield iter.next()).done; more = false) {
const chunk = temp.value;
(_a = chunk.choices) == null ? void 0 : _a.forEach((chunk2) => {
const c = fromOpenAiChunkChoice(chunk2);
streamingCallback({
index: c.index,
content: c.message.content
});
});
}
} catch (temp) {
error = [temp];
} finally {
try {
more && (temp = iter.return) && (yield temp.call(iter));
} finally {
if (error)
throw error[0];
}
}
response = yield stream.finalChatCompletion();
} else {
response = yield client.chat.completions.create(body);
}
return {
candidates: response.choices.map(
(c) => {
var _a2;
return fromOpenAiChoice(c, ((_a2 = request.output) == null ? void 0 : _a2.format) === "json");
}
),
usage: {
inputTokens: (_b = response.usage) == null ? void 0 : _b.prompt_tokens,
outputTokens: (_c = response.usage) == null ? void 0 : _c.completion_tokens,
totalTokens: (_d = response.usage) == null ? void 0 : _d.total_tokens
},
custom: response
};
});
}
function gptModel(ai, name, client, modelInfo, modelConfig) {
const modelId = `openai/${name}`;
const model = SUPPORTED_GPT_MODELS[name];
if (!model) {
SUPPORTED_GPT_MODELS[name] = modelRef({
name: modelId,
info: modelInfo,
configSchema: modelConfig == null ? void 0 : modelConfig.configSchema
});
}
const modelInformation = modelInfo ? modelInfo : model.info;
const configSchema = modelConfig ? modelConfig.configSchema : model.configSchema;
return ai.defineModel(
__spreadProps(__spreadValues({
name: modelId
}, modelInformation), {
configSchema
}),
gptRunner(name, client)
);
}
export {
OpenAiConfigSchema,
SUPPORTED_GPT_MODELS,
fromOpenAiChoice,
fromOpenAiChunkChoice,
fromOpenAiToolCall,
gpt35Turbo,
gpt4,
gpt45,
gpt4Turbo,
gpt4Vision,
gpt4o,
gpt4oMini,
gptModel,
gptRunner,
o1,
o1Mini,
o1Preview,
o3Mini,
toOpenAIRole,
toOpenAiMessages,
toOpenAiRequestBody,
toOpenAiTextAndMedia
};
//# sourceMappingURL=gpt.mjs.map