UNPKG

genkitx-openai

Version:

Firebase Genkit AI framework plugin for OpenAI APIs.

143 lines 5.14 kB
"use strict"; var __create = Object.create; var __defProp = Object.defineProperty; var __getOwnPropDesc = Object.getOwnPropertyDescriptor; var __getOwnPropNames = Object.getOwnPropertyNames; var __getProtoOf = Object.getPrototypeOf; var __hasOwnProp = Object.prototype.hasOwnProperty; var __export = (target, all) => { for (var name in all) __defProp(target, name, { get: all[name], enumerable: true }); }; var __copyProps = (to, from, except, desc) => { if (from && typeof from === "object" || typeof from === "function") { for (let key of __getOwnPropNames(from)) if (!__hasOwnProp.call(to, key) && key !== except) __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable }); } return to; }; var __toESM = (mod, isNodeMode, target) => (target = mod != null ? __create(__getProtoOf(mod)) : {}, __copyProps( // If the importer is in node compatibility mode or this is not an ESM // file that has been converted to a CommonJS file using a Babel- // compatible transform (i.e. "__esModule" has not been set), then set // "default" to the CommonJS "module.exports" for node compatibility. isNodeMode || !mod || !mod.__esModule ? __defProp(target, "default", { value: mod, enumerable: true }) : target, mod )); var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod); var __async = (__this, __arguments, generator) => { return new Promise((resolve, reject) => { var fulfilled = (value) => { try { step(generator.next(value)); } catch (e) { reject(e); } }; var rejected = (value) => { try { step(generator.throw(value)); } catch (e) { reject(e); } }; var step = (x) => x.done ? resolve(x.value) : Promise.resolve(x.value).then(fulfilled, rejected); step((generator = generator.apply(__this, __arguments)).next()); }); }; var embedder_exports = {}; __export(embedder_exports, { SUPPORTED_EMBEDDING_MODELS: () => SUPPORTED_EMBEDDING_MODELS, TextEmbeddingConfigSchema: () => TextEmbeddingConfigSchema, TextEmbeddingInputSchema: () => TextEmbeddingInputSchema, openaiEmbedder: () => openaiEmbedder, textEmbedding3Large: () => textEmbedding3Large, textEmbedding3Small: () => textEmbedding3Small, textEmbeddingAda002: () => textEmbeddingAda002 }); module.exports = __toCommonJS(embedder_exports); var import_openai = __toESM(require("openai")); var import_genkit = require("genkit"); const TextEmbeddingConfigSchema = import_genkit.z.object({ dimensions: import_genkit.z.number().optional(), encodingFormat: import_genkit.z.union([import_genkit.z.literal("float"), import_genkit.z.literal("base64")]).optional() }); const TextEmbeddingInputSchema = import_genkit.z.string(); const textEmbedding3Small = (0, import_genkit.embedderRef)({ name: "openai/text-embedding-3-small", configSchema: TextEmbeddingConfigSchema, info: { dimensions: 1536, label: "Open AI - Text Embedding 3 Small", supports: { input: ["text"] } } }); const textEmbedding3Large = (0, import_genkit.embedderRef)({ name: "openai/text-embedding-3-large", configSchema: TextEmbeddingConfigSchema, info: { dimensions: 3072, label: "Open AI - Text Embedding 3 Large", supports: { input: ["text"] } } }); const textEmbeddingAda002 = (0, import_genkit.embedderRef)({ name: "openai/text-embedding-ada-002", configSchema: TextEmbeddingConfigSchema, info: { dimensions: 1536, label: "Open AI - Text Embedding ADA 002", supports: { input: ["text"] } } }); const SUPPORTED_EMBEDDING_MODELS = { "text-embedding-3-small": textEmbedding3Small, "text-embedding-3-large": textEmbedding3Large, "text-embedding-ada-002": textEmbeddingAda002 }; function openaiEmbedder(ai, name, options) { let apiKey = (options == null ? void 0 : options.apiKey) || process.env.OPENAI_API_KEY; if (!apiKey) throw new Error( "please pass in the API key or set the OPENAI_API_KEY environment variable" ); const model = SUPPORTED_EMBEDDING_MODELS[name]; if (!model) throw new Error(`Unsupported model: ${name}`); const client = new import_openai.default({ apiKey }); return ai.defineEmbedder( { info: model.info, configSchema: TextEmbeddingConfigSchema, name: model.name }, (input, options2) => __async(this, null, function* () { const embeddings = yield client.embeddings.create({ model: name, input: input.map((d) => d.text), dimensions: options2 == null ? void 0 : options2.dimensions, encoding_format: options2 == null ? void 0 : options2.encodingFormat }); return { embeddings: embeddings.data.map((d) => ({ embedding: d.embedding })) }; }) ); } // Annotate the CommonJS export names for ESM import in node: 0 && (module.exports = { SUPPORTED_EMBEDDING_MODELS, TextEmbeddingConfigSchema, TextEmbeddingInputSchema, openaiEmbedder, textEmbedding3Large, textEmbedding3Small, textEmbeddingAda002 }); //# sourceMappingURL=embedder.js.map