UNPKG

genkit-cli

Version:

CLI for interacting with the Google Genkit AI framework

171 lines 7.58 kB
"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || (function () { var ownKeys = function(o) { ownKeys = Object.getOwnPropertyNames || function (o) { var ar = []; for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k; return ar; }; return ownKeys(o); }; return function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]); __setModuleDefault(result, mod); return result; }; })(); Object.defineProperty(exports, "__esModule", { value: true }); exports.evalFlow = void 0; const tools_common_1 = require("@genkit-ai/tools-common"); const eval_1 = require("@genkit-ai/tools-common/eval"); const utils_1 = require("@genkit-ai/tools-common/utils"); const clc = __importStar(require("colorette")); const commander_1 = require("commander"); const manager_utils_1 = require("../utils/manager-utils"); const EVAL_FLOW_SCHEMA = 'Array<{input: any; reference?: any;}>'; var SourceType; (function (SourceType) { SourceType["DATA"] = "data"; SourceType["FILE"] = "file"; SourceType["DATASET"] = "dataset"; })(SourceType || (SourceType = {})); exports.evalFlow = new commander_1.Command('eval:flow') .description('evaluate a flow against configured evaluators using provided data as input') .argument('<flowName>', 'Name of the flow to run') .argument('[data]', 'JSON data to use to start the flow') .option('--input <input>', 'Input dataset ID or JSON file to be used for evaluation') .option('-c, --context <JSON>', 'JSON object passed to context', '') .option('-o, --output <filename>', 'Name of the output file to write evaluation results. Defaults to json output.') .option('--output-format <format>', 'The output file format (csv, json)', 'json') .option('-e, --evaluators <evaluators>', 'comma separated list of evaluators to use (by default uses all)') .option('--batchSize <batchSize>', 'batch size to use for parallel evals (default to 1, no parallelization)', Number.parseInt) .option('-f, --force', 'Automatically accept all interactive prompts') .action(async (flowName, data, options) => { await (0, manager_utils_1.runWithManager)(await (0, utils_1.findProjectRoot)(), async (manager) => { const actionRef = `/flow/${flowName}`; if (!data && !options.input) { throw new Error('No input data passed. Specify input data using [data] argument or --input <filename> option'); } const hasTargetAction = await (0, utils_1.hasAction)({ manager, actionRef }); if (!hasTargetAction) { throw new Error(`Cannot find action ${actionRef}.`); } let evaluatorActions; if (!options.evaluators) { evaluatorActions = await (0, eval_1.getAllEvaluatorActions)(manager); } else { const evalActionKeys = options.evaluators .split(',') .map((k) => `/evaluator/${k}`); evaluatorActions = await (0, eval_1.getMatchingEvaluatorActions)(manager, evalActionKeys); } if (!evaluatorActions.length) { throw new Error(options.evaluators ? `No matching evaluators found for '${options.evaluators}'` : `No evaluators found in your app`); } utils_1.logger.debug(`Using evaluators: ${evaluatorActions.map((action) => action.name).join(',')}`); if (!options.force) { const confirmed = await (0, utils_1.confirmLlmUse)(evaluatorActions); if (!confirmed) { throw new Error('User declined using billed evaluators.'); } } const sourceType = getSourceType(data, options.input); let targetDatasetMetadata; if (sourceType === SourceType.DATASET) { const datasetStore = await (0, eval_1.getDatasetStore)(); const datasetMetadatas = await datasetStore.listDatasets(); targetDatasetMetadata = datasetMetadatas.find((d) => d.datasetId === options.input); } const inferenceDataset = await readInputs(sourceType, data, options.input); const evalDataset = await (0, eval_1.runInference)({ manager, actionRef, inferenceDataset, context: options.context, }); const evalRun = await (0, eval_1.runEvaluation)({ manager, evaluatorActions, evalDataset, batchSize: options.batchSize, augments: { actionRef: `/flow/${flowName}`, datasetId: sourceType === SourceType.DATASET ? options.input : undefined, datasetVersion: targetDatasetMetadata?.version, }, }); if (options.output) { const exportFn = (0, eval_1.getExporterForString)(options.outputFormat); await exportFn(evalRun, options.output); } const toolsInfo = manager.getMostRecentDevUI(); if (toolsInfo) { utils_1.logger.info(clc.green(`\nView the evaluation results at: ${toolsInfo.url}/evaluate/${evalRun.key.evalRunId}`)); } else { utils_1.logger.info(`Succesfully ran evaluation, with evalId: ${evalRun.key.evalRunId}`); } }); }); async function readInputs(sourceType, dataField, input) { let parsedData; switch (sourceType) { case SourceType.DATA: parsedData = JSON.parse(dataField); break; case SourceType.FILE: try { return await (0, utils_1.loadInferenceDatasetFile)(input); } catch (e) { throw new Error(`Error parsing the input from file. Error: ${e}`); } case SourceType.DATASET: const datasetStore = await (0, eval_1.getDatasetStore)(); const data = await datasetStore.getDataset(input); parsedData = data; break; } try { return tools_common_1.DatasetSchema.parse(parsedData); } catch (e) { throw new Error(`Error parsing the input. Please provide an array of inputs for the flow or a ${EVAL_FLOW_SCHEMA} object. Error: ${e}`); } } function getSourceType(data, input) { if (input) { if (data) { utils_1.logger.warn('Both [data] and input provided, ignoring [data]...'); } return input.endsWith('.json') || input.endsWith('.jsonl') ? SourceType.FILE : SourceType.DATASET; } else if (data) { return SourceType.DATA; } throw new Error('Must provide either data or input'); } //# sourceMappingURL=eval-flow.js.map