UNPKG

framework-rai-mcp

Version:

Model Context Protocol server for Framework-RAI with MCP-compliant endpoints for responsible AI analysis

90 lines (78 loc) 3.08 kB
const fs = require('fs-extra'); const { OpenAI } = require('openai'); /** * Analyze model for potential issues */ async function analyzeModel(modelFile, modelType) { try { // Initialize OpenAI with the current API key const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY }); let fileContent; if (typeof modelFile === 'string' && await fs.pathExists(modelFile)) { fileContent = await fs.readFile(modelFile, 'utf-8'); } else { fileContent = modelFile; // Assume modelFile is the content string } // Limit content size to avoid token limits fileContent = fileContent.slice(0, 2500); // Prepare prompt for OpenAI const prompt = ` Analyze this ${modelType || 'AI'} model code for potential issues: ${fileContent} Provide a detailed analysis including: 1. Potential biases in the model architecture or training approach 2. Missing documentation or transparency elements 3. Potential security or privacy concerns 4. Suggestions for testing and validation Format your response as JSON with these categories as keys and detailed analysis as values. Example format: { "biases": "Detailed analysis of biases...", "documentation": "Analysis of documentation issues...", "security_privacy": "Security and privacy concerns...", "testing_validation": "Testing and validation suggestions..." } `; // Check if API key is available if (!process.env.OPENAI_API_KEY) { console.warn('No OpenAI API key provided. Returning mock analysis.'); return { biases: "Mock analysis: This model might have bias issues due to training data limitations.", documentation: "Mock analysis: The model lacks proper documentation about its limitations and intended use.", security_privacy: "Mock analysis: Consider implementing data anonymization and access controls.", testing_validation: "Mock analysis: Implement comprehensive testing across different scenarios." }; } // Call OpenAI API const response = await openai.chat.completions.create({ model: "gpt-4", messages: [ { role: "system", content: "You are an AI expert specializing in responsible AI practices. Provide detailed analysis of model code." }, { role: "user", content: prompt } ], temperature: 0.7, max_tokens: 1500 }); // Parse and return analysis try { const analysis = JSON.parse(response.choices[0].message.content); return analysis; } catch (error) { console.error('Error parsing OpenAI response:', error); return { biases: "Error analyzing model", documentation: "Error analyzing model", security_privacy: "Error analyzing model", testing_validation: "Error analyzing model" }; } } catch (error) { console.error('Error analyzing model:', error); throw error; } } module.exports = { analyzeModel };