UNPKG

framer-motion

Version:

A simple and powerful JavaScript animation library

1,453 lines (1,378 loc) • 189 kB
'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); var motionDom = require('motion-dom'); var motionUtils = require('motion-utils'); const clamp = (min, max, v) => { if (v > max) return max; if (v < min) return min; return v; }; const velocitySampleDuration = 5; // ms function calcGeneratorVelocity(resolveValue, t, current) { const prevT = Math.max(t - velocitySampleDuration, 0); return motionUtils.velocityPerSecond(current - resolveValue(prevT), t - prevT); } const springDefaults = { // Default spring physics stiffness: 100, damping: 10, mass: 1.0, velocity: 0.0, // Default duration/bounce-based options duration: 800, // in ms bounce: 0.3, visualDuration: 0.3, // in seconds // Rest thresholds restSpeed: { granular: 0.01, default: 2, }, restDelta: { granular: 0.005, default: 0.5, }, // Limits minDuration: 0.01, // in seconds maxDuration: 10.0, // in seconds minDamping: 0.05, maxDamping: 1, }; const safeMin = 0.001; function findSpring({ duration = springDefaults.duration, bounce = springDefaults.bounce, velocity = springDefaults.velocity, mass = springDefaults.mass, }) { let envelope; let derivative; motionUtils.warning(duration <= motionUtils.secondsToMilliseconds(springDefaults.maxDuration), "Spring duration must be 10 seconds or less"); let dampingRatio = 1 - bounce; /** * Restrict dampingRatio and duration to within acceptable ranges. */ dampingRatio = clamp(springDefaults.minDamping, springDefaults.maxDamping, dampingRatio); duration = clamp(springDefaults.minDuration, springDefaults.maxDuration, motionUtils.millisecondsToSeconds(duration)); if (dampingRatio < 1) { /** * Underdamped spring */ envelope = (undampedFreq) => { const exponentialDecay = undampedFreq * dampingRatio; const delta = exponentialDecay * duration; const a = exponentialDecay - velocity; const b = calcAngularFreq(undampedFreq, dampingRatio); const c = Math.exp(-delta); return safeMin - (a / b) * c; }; derivative = (undampedFreq) => { const exponentialDecay = undampedFreq * dampingRatio; const delta = exponentialDecay * duration; const d = delta * velocity + velocity; const e = Math.pow(dampingRatio, 2) * Math.pow(undampedFreq, 2) * duration; const f = Math.exp(-delta); const g = calcAngularFreq(Math.pow(undampedFreq, 2), dampingRatio); const factor = -envelope(undampedFreq) + safeMin > 0 ? -1 : 1; return (factor * ((d - e) * f)) / g; }; } else { /** * Critically-damped spring */ envelope = (undampedFreq) => { const a = Math.exp(-undampedFreq * duration); const b = (undampedFreq - velocity) * duration + 1; return -safeMin + a * b; }; derivative = (undampedFreq) => { const a = Math.exp(-undampedFreq * duration); const b = (velocity - undampedFreq) * (duration * duration); return a * b; }; } const initialGuess = 5 / duration; const undampedFreq = approximateRoot(envelope, derivative, initialGuess); duration = motionUtils.secondsToMilliseconds(duration); if (isNaN(undampedFreq)) { return { stiffness: springDefaults.stiffness, damping: springDefaults.damping, duration, }; } else { const stiffness = Math.pow(undampedFreq, 2) * mass; return { stiffness, damping: dampingRatio * 2 * Math.sqrt(mass * stiffness), duration, }; } } const rootIterations = 12; function approximateRoot(envelope, derivative, initialGuess) { let result = initialGuess; for (let i = 1; i < rootIterations; i++) { result = result - envelope(result) / derivative(result); } return result; } function calcAngularFreq(undampedFreq, dampingRatio) { return undampedFreq * Math.sqrt(1 - dampingRatio * dampingRatio); } const durationKeys = ["duration", "bounce"]; const physicsKeys = ["stiffness", "damping", "mass"]; function isSpringType(options, keys) { return keys.some((key) => options[key] !== undefined); } function getSpringOptions(options) { let springOptions = { velocity: springDefaults.velocity, stiffness: springDefaults.stiffness, damping: springDefaults.damping, mass: springDefaults.mass, isResolvedFromDuration: false, ...options, }; // stiffness/damping/mass overrides duration/bounce if (!isSpringType(options, physicsKeys) && isSpringType(options, durationKeys)) { if (options.visualDuration) { const visualDuration = options.visualDuration; const root = (2 * Math.PI) / (visualDuration * 1.2); const stiffness = root * root; const damping = 2 * clamp(0.05, 1, 1 - (options.bounce || 0)) * Math.sqrt(stiffness); springOptions = { ...springOptions, mass: springDefaults.mass, stiffness, damping, }; } else { const derived = findSpring(options); springOptions = { ...springOptions, ...derived, mass: springDefaults.mass, }; springOptions.isResolvedFromDuration = true; } } return springOptions; } function spring(optionsOrVisualDuration = springDefaults.visualDuration, bounce = springDefaults.bounce) { const options = typeof optionsOrVisualDuration !== "object" ? { visualDuration: optionsOrVisualDuration, keyframes: [0, 1], bounce, } : optionsOrVisualDuration; let { restSpeed, restDelta } = options; const origin = options.keyframes[0]; const target = options.keyframes[options.keyframes.length - 1]; /** * This is the Iterator-spec return value. We ensure it's mutable rather than using a generator * to reduce GC during animation. */ const state = { done: false, value: origin }; const { stiffness, damping, mass, duration, velocity, isResolvedFromDuration, } = getSpringOptions({ ...options, velocity: -motionUtils.millisecondsToSeconds(options.velocity || 0), }); const initialVelocity = velocity || 0.0; const dampingRatio = damping / (2 * Math.sqrt(stiffness * mass)); const initialDelta = target - origin; const undampedAngularFreq = motionUtils.millisecondsToSeconds(Math.sqrt(stiffness / mass)); /** * If we're working on a granular scale, use smaller defaults for determining * when the spring is finished. * * These defaults have been selected emprically based on what strikes a good * ratio between feeling good and finishing as soon as changes are imperceptible. */ const isGranularScale = Math.abs(initialDelta) < 5; restSpeed || (restSpeed = isGranularScale ? springDefaults.restSpeed.granular : springDefaults.restSpeed.default); restDelta || (restDelta = isGranularScale ? springDefaults.restDelta.granular : springDefaults.restDelta.default); let resolveSpring; if (dampingRatio < 1) { const angularFreq = calcAngularFreq(undampedAngularFreq, dampingRatio); // Underdamped spring resolveSpring = (t) => { const envelope = Math.exp(-dampingRatio * undampedAngularFreq * t); return (target - envelope * (((initialVelocity + dampingRatio * undampedAngularFreq * initialDelta) / angularFreq) * Math.sin(angularFreq * t) + initialDelta * Math.cos(angularFreq * t))); }; } else if (dampingRatio === 1) { // Critically damped spring resolveSpring = (t) => target - Math.exp(-undampedAngularFreq * t) * (initialDelta + (initialVelocity + undampedAngularFreq * initialDelta) * t); } else { // Overdamped spring const dampedAngularFreq = undampedAngularFreq * Math.sqrt(dampingRatio * dampingRatio - 1); resolveSpring = (t) => { const envelope = Math.exp(-dampingRatio * undampedAngularFreq * t); // When performing sinh or cosh values can hit Infinity so we cap them here const freqForT = Math.min(dampedAngularFreq * t, 300); return (target - (envelope * ((initialVelocity + dampingRatio * undampedAngularFreq * initialDelta) * Math.sinh(freqForT) + dampedAngularFreq * initialDelta * Math.cosh(freqForT))) / dampedAngularFreq); }; } const generator = { calculatedDuration: isResolvedFromDuration ? duration || null : null, next: (t) => { const current = resolveSpring(t); if (!isResolvedFromDuration) { let currentVelocity = 0.0; /** * We only need to calculate velocity for under-damped springs * as over- and critically-damped springs can't overshoot, so * checking only for displacement is enough. */ if (dampingRatio < 1) { currentVelocity = t === 0 ? motionUtils.secondsToMilliseconds(initialVelocity) : calcGeneratorVelocity(resolveSpring, t, current); } const isBelowVelocityThreshold = Math.abs(currentVelocity) <= restSpeed; const isBelowDisplacementThreshold = Math.abs(target - current) <= restDelta; state.done = isBelowVelocityThreshold && isBelowDisplacementThreshold; } else { state.done = t >= duration; } state.value = state.done ? target : current; return state; }, toString: () => { const calculatedDuration = Math.min(motionDom.calcGeneratorDuration(generator), motionDom.maxGeneratorDuration); const easing = motionDom.generateLinearEasing((progress) => generator.next(calculatedDuration * progress).value, calculatedDuration, 30); return calculatedDuration + "ms " + easing; }, toTransition: () => { }, }; return generator; } spring.applyToOptions = (options) => { const generatorOptions = motionDom.createGeneratorEasing(options, 100, spring); options.ease = motionDom.supportsLinearEasing() ? generatorOptions.ease : "easeOut"; options.duration = motionUtils.secondsToMilliseconds(generatorOptions.duration); options.type = "keyframes"; return options; }; const wrap = (min, max, v) => { const rangeSize = max - min; return ((((v - min) % rangeSize) + rangeSize) % rangeSize) + min; }; const isEasingArray = (ease) => { return Array.isArray(ease) && typeof ease[0] !== "number"; }; function getEasingForSegment(easing, i) { return isEasingArray(easing) ? easing[wrap(0, easing.length, i)] : easing; } /* Value in range from progress Given a lower limit and an upper limit, we return the value within that range as expressed by progress (usually a number from 0 to 1) So progress = 0.5 would change from -------- to to from ---- to E.g. from = 10, to = 20, progress = 0.5 => 15 @param [number]: Lower limit of range @param [number]: Upper limit of range @param [number]: The progress between lower and upper limits expressed 0-1 @return [number]: Value as calculated from progress within range (not limited within range) */ const mixNumber$1 = (from, to, progress) => { return from + (to - from) * progress; }; function fillOffset(offset, remaining) { const min = offset[offset.length - 1]; for (let i = 1; i <= remaining; i++) { const offsetProgress = motionUtils.progress(0, remaining, i); offset.push(mixNumber$1(min, 1, offsetProgress)); } } function defaultOffset$1(arr) { const offset = [0]; fillOffset(offset, arr.length - 1); return offset; } const isMotionValue = (value) => Boolean(value && value.getVelocity); function isDOMKeyframes(keyframes) { return typeof keyframes === "object" && !Array.isArray(keyframes); } function resolveSubjects(subject, keyframes, scope, selectorCache) { if (typeof subject === "string" && isDOMKeyframes(keyframes)) { return motionDom.resolveElements(subject, scope, selectorCache); } else if (subject instanceof NodeList) { return Array.from(subject); } else if (Array.isArray(subject)) { return subject; } else { return [subject]; } } function calculateRepeatDuration(duration, repeat, _repeatDelay) { return duration * (repeat + 1); } /** * Given a absolute or relative time definition and current/prev time state of the sequence, * calculate an absolute time for the next keyframes. */ function calcNextTime(current, next, prev, labels) { if (typeof next === "number") { return next; } else if (next.startsWith("-") || next.startsWith("+")) { return Math.max(0, current + parseFloat(next)); } else if (next === "<") { return prev; } else { return labels.get(next) ?? current; } } function eraseKeyframes(sequence, startTime, endTime) { for (let i = 0; i < sequence.length; i++) { const keyframe = sequence[i]; if (keyframe.at > startTime && keyframe.at < endTime) { motionUtils.removeItem(sequence, keyframe); // If we remove this item we have to push the pointer back one i--; } } } function addKeyframes(sequence, keyframes, easing, offset, startTime, endTime) { /** * Erase every existing value between currentTime and targetTime, * this will essentially splice this timeline into any currently * defined ones. */ eraseKeyframes(sequence, startTime, endTime); for (let i = 0; i < keyframes.length; i++) { sequence.push({ value: keyframes[i], at: mixNumber$1(startTime, endTime, offset[i]), easing: getEasingForSegment(easing, i), }); } } /** * Take an array of times that represent repeated keyframes. For instance * if we have original times of [0, 0.5, 1] then our repeated times will * be [0, 0.5, 1, 1, 1.5, 2]. Loop over the times and scale them back * down to a 0-1 scale. */ function normalizeTimes(times, repeat) { for (let i = 0; i < times.length; i++) { times[i] = times[i] / (repeat + 1); } } function compareByTime(a, b) { if (a.at === b.at) { if (a.value === null) return 1; if (b.value === null) return -1; return 0; } else { return a.at - b.at; } } const defaultSegmentEasing = "easeInOut"; const MAX_REPEAT = 20; function createAnimationsFromSequence(sequence, { defaultTransition = {}, ...sequenceTransition } = {}, scope, generators) { const defaultDuration = defaultTransition.duration || 0.3; const animationDefinitions = new Map(); const sequences = new Map(); const elementCache = {}; const timeLabels = new Map(); let prevTime = 0; let currentTime = 0; let totalDuration = 0; /** * Build the timeline by mapping over the sequence array and converting * the definitions into keyframes and offsets with absolute time values. * These will later get converted into relative offsets in a second pass. */ for (let i = 0; i < sequence.length; i++) { const segment = sequence[i]; /** * If this is a timeline label, mark it and skip the rest of this iteration. */ if (typeof segment === "string") { timeLabels.set(segment, currentTime); continue; } else if (!Array.isArray(segment)) { timeLabels.set(segment.name, calcNextTime(currentTime, segment.at, prevTime, timeLabels)); continue; } let [subject, keyframes, transition = {}] = segment; /** * If a relative or absolute time value has been specified we need to resolve * it in relation to the currentTime. */ if (transition.at !== undefined) { currentTime = calcNextTime(currentTime, transition.at, prevTime, timeLabels); } /** * Keep track of the maximum duration in this definition. This will be * applied to currentTime once the definition has been parsed. */ let maxDuration = 0; const resolveValueSequence = (valueKeyframes, valueTransition, valueSequence, elementIndex = 0, numSubjects = 0) => { const valueKeyframesAsList = keyframesAsList(valueKeyframes); const { delay = 0, times = defaultOffset$1(valueKeyframesAsList), type = "keyframes", repeat, repeatType, repeatDelay = 0, ...remainingTransition } = valueTransition; let { ease = defaultTransition.ease || "easeOut", duration } = valueTransition; /** * Resolve stagger() if defined. */ const calculatedDelay = typeof delay === "function" ? delay(elementIndex, numSubjects) : delay; /** * If this animation should and can use a spring, generate a spring easing function. */ const numKeyframes = valueKeyframesAsList.length; const createGenerator = motionDom.isGenerator(type) ? type : generators?.[type]; if (numKeyframes <= 2 && createGenerator) { /** * As we're creating an easing function from a spring, * ideally we want to generate it using the real distance * between the two keyframes. However this isn't always * possible - in these situations we use 0-100. */ let absoluteDelta = 100; if (numKeyframes === 2 && isNumberKeyframesArray(valueKeyframesAsList)) { const delta = valueKeyframesAsList[1] - valueKeyframesAsList[0]; absoluteDelta = Math.abs(delta); } const springTransition = { ...remainingTransition }; if (duration !== undefined) { springTransition.duration = motionUtils.secondsToMilliseconds(duration); } const springEasing = motionDom.createGeneratorEasing(springTransition, absoluteDelta, createGenerator); ease = springEasing.ease; duration = springEasing.duration; } duration ?? (duration = defaultDuration); const startTime = currentTime + calculatedDelay; /** * If there's only one time offset of 0, fill in a second with length 1 */ if (times.length === 1 && times[0] === 0) { times[1] = 1; } /** * Fill out if offset if fewer offsets than keyframes */ const remainder = times.length - valueKeyframesAsList.length; remainder > 0 && fillOffset(times, remainder); /** * If only one value has been set, ie [1], push a null to the start of * the keyframe array. This will let us mark a keyframe at this point * that will later be hydrated with the previous value. */ valueKeyframesAsList.length === 1 && valueKeyframesAsList.unshift(null); /** * Handle repeat options */ if (repeat) { motionUtils.invariant(repeat < MAX_REPEAT, "Repeat count too high, must be less than 20"); duration = calculateRepeatDuration(duration, repeat); const originalKeyframes = [...valueKeyframesAsList]; const originalTimes = [...times]; ease = Array.isArray(ease) ? [...ease] : [ease]; const originalEase = [...ease]; for (let repeatIndex = 0; repeatIndex < repeat; repeatIndex++) { valueKeyframesAsList.push(...originalKeyframes); for (let keyframeIndex = 0; keyframeIndex < originalKeyframes.length; keyframeIndex++) { times.push(originalTimes[keyframeIndex] + (repeatIndex + 1)); ease.push(keyframeIndex === 0 ? "linear" : getEasingForSegment(originalEase, keyframeIndex - 1)); } } normalizeTimes(times, repeat); } const targetTime = startTime + duration; /** * Add keyframes, mapping offsets to absolute time. */ addKeyframes(valueSequence, valueKeyframesAsList, ease, times, startTime, targetTime); maxDuration = Math.max(calculatedDelay + duration, maxDuration); totalDuration = Math.max(targetTime, totalDuration); }; if (isMotionValue(subject)) { const subjectSequence = getSubjectSequence(subject, sequences); resolveValueSequence(keyframes, transition, getValueSequence("default", subjectSequence)); } else { const subjects = resolveSubjects(subject, keyframes, scope, elementCache); const numSubjects = subjects.length; /** * For every element in this segment, process the defined values. */ for (let subjectIndex = 0; subjectIndex < numSubjects; subjectIndex++) { /** * Cast necessary, but we know these are of this type */ keyframes = keyframes; transition = transition; const thisSubject = subjects[subjectIndex]; const subjectSequence = getSubjectSequence(thisSubject, sequences); for (const key in keyframes) { resolveValueSequence(keyframes[key], getValueTransition(transition, key), getValueSequence(key, subjectSequence), subjectIndex, numSubjects); } } } prevTime = currentTime; currentTime += maxDuration; } /** * For every element and value combination create a new animation. */ sequences.forEach((valueSequences, element) => { for (const key in valueSequences) { const valueSequence = valueSequences[key]; /** * Arrange all the keyframes in ascending time order. */ valueSequence.sort(compareByTime); const keyframes = []; const valueOffset = []; const valueEasing = []; /** * For each keyframe, translate absolute times into * relative offsets based on the total duration of the timeline. */ for (let i = 0; i < valueSequence.length; i++) { const { at, value, easing } = valueSequence[i]; keyframes.push(value); valueOffset.push(motionUtils.progress(0, totalDuration, at)); valueEasing.push(easing || "easeOut"); } /** * If the first keyframe doesn't land on offset: 0 * provide one by duplicating the initial keyframe. This ensures * it snaps to the first keyframe when the animation starts. */ if (valueOffset[0] !== 0) { valueOffset.unshift(0); keyframes.unshift(keyframes[0]); valueEasing.unshift(defaultSegmentEasing); } /** * If the last keyframe doesn't land on offset: 1 * provide one with a null wildcard value. This will ensure it * stays static until the end of the animation. */ if (valueOffset[valueOffset.length - 1] !== 1) { valueOffset.push(1); keyframes.push(null); } if (!animationDefinitions.has(element)) { animationDefinitions.set(element, { keyframes: {}, transition: {}, }); } const definition = animationDefinitions.get(element); definition.keyframes[key] = keyframes; definition.transition[key] = { ...defaultTransition, duration: totalDuration, ease: valueEasing, times: valueOffset, ...sequenceTransition, }; } }); return animationDefinitions; } function getSubjectSequence(subject, sequences) { !sequences.has(subject) && sequences.set(subject, {}); return sequences.get(subject); } function getValueSequence(name, sequences) { if (!sequences[name]) sequences[name] = []; return sequences[name]; } function keyframesAsList(keyframes) { return Array.isArray(keyframes) ? keyframes : [keyframes]; } function getValueTransition(transition, key) { return transition && transition[key] ? { ...transition, ...transition[key], } : { ...transition }; } const isNumber = (keyframe) => typeof keyframe === "number"; const isNumberKeyframesArray = (keyframes) => keyframes.every(isNumber); const visualElementStore = new WeakMap(); /** * Generate a list of every possible transform key. */ const transformPropOrder = [ "transformPerspective", "x", "y", "z", "translateX", "translateY", "translateZ", "scale", "scaleX", "scaleY", "rotate", "rotateX", "rotateY", "rotateZ", "skew", "skewX", "skewY", ]; /** * A quick lookup for transform props. */ const transformProps = new Set(transformPropOrder); const positionalKeys = new Set([ "width", "height", "top", "left", "right", "bottom", ...transformPropOrder, ]); const isKeyframesTarget = (v) => { return Array.isArray(v); }; const resolveFinalValueInKeyframes = (v) => { // TODO maybe throw if v.length - 1 is placeholder token? return isKeyframesTarget(v) ? v[v.length - 1] || 0 : v; }; function getValueState(visualElement) { const state = [{}, {}]; visualElement?.values.forEach((value, key) => { state[0][key] = value.get(); state[1][key] = value.getVelocity(); }); return state; } function resolveVariantFromProps(props, definition, custom, visualElement) { /** * If the variant definition is a function, resolve. */ if (typeof definition === "function") { const [current, velocity] = getValueState(visualElement); definition = definition(custom !== undefined ? custom : props.custom, current, velocity); } /** * If the variant definition is a variant label, or * the function returned a variant label, resolve. */ if (typeof definition === "string") { definition = props.variants && props.variants[definition]; } /** * At this point we've resolved both functions and variant labels, * but the resolved variant label might itself have been a function. * If so, resolve. This can only have returned a valid target object. */ if (typeof definition === "function") { const [current, velocity] = getValueState(visualElement); definition = definition(custom !== undefined ? custom : props.custom, current, velocity); } return definition; } function resolveVariant(visualElement, definition, custom) { const props = visualElement.getProps(); return resolveVariantFromProps(props, definition, custom !== undefined ? custom : props.custom, visualElement); } /** * Set VisualElement's MotionValue, creating a new MotionValue for it if * it doesn't exist. */ function setMotionValue(visualElement, key, value) { if (visualElement.hasValue(key)) { visualElement.getValue(key).set(value); } else { visualElement.addValue(key, motionDom.motionValue(value)); } } function setTarget(visualElement, definition) { const resolved = resolveVariant(visualElement, definition); let { transitionEnd = {}, transition = {}, ...target } = resolved || {}; target = { ...target, ...transitionEnd }; for (const key in target) { const value = resolveFinalValueInKeyframes(target[key]); setMotionValue(visualElement, key, value); } } function isWillChangeMotionValue(value) { return Boolean(isMotionValue(value) && value.add); } function addValueToWillChange(visualElement, key) { const willChange = visualElement.getValue("willChange"); /** * It could be that a user has set willChange to a regular MotionValue, * in which case we can't add the value to it. */ if (isWillChangeMotionValue(willChange)) { return willChange.add(key); } else if (!willChange && motionUtils.MotionGlobalConfig.WillChange) { const newWillChange = new motionUtils.MotionGlobalConfig.WillChange("auto"); visualElement.addValue("willChange", newWillChange); newWillChange.add(key); } } /** * Convert camelCase to dash-case properties. */ const camelToDash = (str) => str.replace(/([a-z])([A-Z])/gu, "$1-$2").toLowerCase(); const optimizedAppearDataId = "framerAppearId"; const optimizedAppearDataAttribute = "data-" + camelToDash(optimizedAppearDataId); function getOptimisedAppearId(visualElement) { return visualElement.props[optimizedAppearDataAttribute]; } /* Bezier function generator This has been modified from Gaƫtan Renaudeau's BezierEasing https://github.com/gre/bezier-easing/blob/master/src/index.js https://github.com/gre/bezier-easing/blob/master/LICENSE I've removed the newtonRaphsonIterate algo because in benchmarking it wasn't noticiably faster than binarySubdivision, indeed removing it usually improved times, depending on the curve. I also removed the lookup table, as for the added bundle size and loop we're only cutting ~4 or so subdivision iterations. I bumped the max iterations up to 12 to compensate and this still tended to be faster for no perceivable loss in accuracy. Usage const easeOut = cubicBezier(.17,.67,.83,.67); const x = easeOut(0.5); // returns 0.627... */ // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2. const calcBezier = (t, a1, a2) => (((1.0 - 3.0 * a2 + 3.0 * a1) * t + (3.0 * a2 - 6.0 * a1)) * t + 3.0 * a1) * t; const subdivisionPrecision = 0.0000001; const subdivisionMaxIterations = 12; function binarySubdivide(x, lowerBound, upperBound, mX1, mX2) { let currentX; let currentT; let i = 0; do { currentT = lowerBound + (upperBound - lowerBound) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - x; if (currentX > 0.0) { upperBound = currentT; } else { lowerBound = currentT; } } while (Math.abs(currentX) > subdivisionPrecision && ++i < subdivisionMaxIterations); return currentT; } function cubicBezier(mX1, mY1, mX2, mY2) { // If this is a linear gradient, return linear easing if (mX1 === mY1 && mX2 === mY2) return motionUtils.noop; const getTForX = (aX) => binarySubdivide(aX, 0, 1, mX1, mX2); // If animation is at start/end, return t without easing return (t) => t === 0 || t === 1 ? t : calcBezier(getTForX(t), mY1, mY2); } // Accepts an easing function and returns a new one that outputs mirrored values for // the second half of the animation. Turns easeIn into easeInOut. const mirrorEasing = (easing) => (p) => p <= 0.5 ? easing(2 * p) / 2 : (2 - easing(2 * (1 - p))) / 2; // Accepts an easing function and returns a new one that outputs reversed values. // Turns easeIn into easeOut. const reverseEasing = (easing) => (p) => 1 - easing(1 - p); const backOut = /*@__PURE__*/ cubicBezier(0.33, 1.53, 0.69, 0.99); const backIn = /*@__PURE__*/ reverseEasing(backOut); const backInOut = /*@__PURE__*/ mirrorEasing(backIn); const anticipate = (p) => (p *= 2) < 1 ? 0.5 * backIn(p) : 0.5 * (2 - Math.pow(2, -10 * (p - 1))); const circIn = (p) => 1 - Math.sin(Math.acos(p)); const circOut = reverseEasing(circIn); const circInOut = mirrorEasing(circIn); /** * Check if the value is a zero value string like "0px" or "0%" */ const isZeroValueString = (v) => /^0[^.\s]+$/u.test(v); function isNone(value) { if (typeof value === "number") { return value === 0; } else if (value !== null) { return value === "none" || value === "0" || isZeroValueString(value); } else { return true; } } const number = { test: (v) => typeof v === "number", parse: parseFloat, transform: (v) => v, }; const alpha = { ...number, transform: (v) => clamp(0, 1, v), }; const scale = { ...number, default: 1, }; // If this number is a decimal, make it just five decimal places // to avoid exponents const sanitize = (v) => Math.round(v * 100000) / 100000; const floatRegex = /-?(?:\d+(?:\.\d+)?|\.\d+)/gu; function isNullish(v) { return v == null; } const singleColorRegex = /^(?:#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\))$/iu; /** * Returns true if the provided string is a color, ie rgba(0,0,0,0) or #000, * but false if a number or multiple colors */ const isColorString = (type, testProp) => (v) => { return Boolean((typeof v === "string" && singleColorRegex.test(v) && v.startsWith(type)) || (testProp && !isNullish(v) && Object.prototype.hasOwnProperty.call(v, testProp))); }; const splitColor = (aName, bName, cName) => (v) => { if (typeof v !== "string") return v; const [a, b, c, alpha] = v.match(floatRegex); return { [aName]: parseFloat(a), [bName]: parseFloat(b), [cName]: parseFloat(c), alpha: alpha !== undefined ? parseFloat(alpha) : 1, }; }; const clampRgbUnit = (v) => clamp(0, 255, v); const rgbUnit = { ...number, transform: (v) => Math.round(clampRgbUnit(v)), }; const rgba = { test: /*@__PURE__*/ isColorString("rgb", "red"), parse: /*@__PURE__*/ splitColor("red", "green", "blue"), transform: ({ red, green, blue, alpha: alpha$1 = 1 }) => "rgba(" + rgbUnit.transform(red) + ", " + rgbUnit.transform(green) + ", " + rgbUnit.transform(blue) + ", " + sanitize(alpha.transform(alpha$1)) + ")", }; function parseHex(v) { let r = ""; let g = ""; let b = ""; let a = ""; // If we have 6 characters, ie #FF0000 if (v.length > 5) { r = v.substring(1, 3); g = v.substring(3, 5); b = v.substring(5, 7); a = v.substring(7, 9); // Or we have 3 characters, ie #F00 } else { r = v.substring(1, 2); g = v.substring(2, 3); b = v.substring(3, 4); a = v.substring(4, 5); r += r; g += g; b += b; a += a; } return { red: parseInt(r, 16), green: parseInt(g, 16), blue: parseInt(b, 16), alpha: a ? parseInt(a, 16) / 255 : 1, }; } const hex = { test: /*@__PURE__*/ isColorString("#"), parse: parseHex, transform: rgba.transform, }; const createUnitType = (unit) => ({ test: (v) => typeof v === "string" && v.endsWith(unit) && v.split(" ").length === 1, parse: parseFloat, transform: (v) => `${v}${unit}`, }); const degrees = /*@__PURE__*/ createUnitType("deg"); const percent = /*@__PURE__*/ createUnitType("%"); const px = /*@__PURE__*/ createUnitType("px"); const vh = /*@__PURE__*/ createUnitType("vh"); const vw = /*@__PURE__*/ createUnitType("vw"); const progressPercentage = { ...percent, parse: (v) => percent.parse(v) / 100, transform: (v) => percent.transform(v * 100), }; const hsla = { test: /*@__PURE__*/ isColorString("hsl", "hue"), parse: /*@__PURE__*/ splitColor("hue", "saturation", "lightness"), transform: ({ hue, saturation, lightness, alpha: alpha$1 = 1 }) => { return ("hsla(" + Math.round(hue) + ", " + percent.transform(sanitize(saturation)) + ", " + percent.transform(sanitize(lightness)) + ", " + sanitize(alpha.transform(alpha$1)) + ")"); }, }; const color = { test: (v) => rgba.test(v) || hex.test(v) || hsla.test(v), parse: (v) => { if (rgba.test(v)) { return rgba.parse(v); } else if (hsla.test(v)) { return hsla.parse(v); } else { return hex.parse(v); } }, transform: (v) => { return typeof v === "string" ? v : v.hasOwnProperty("red") ? rgba.transform(v) : hsla.transform(v); }, }; const colorRegex = /(?:#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\))/giu; function test(v) { return (isNaN(v) && typeof v === "string" && (v.match(floatRegex)?.length || 0) + (v.match(colorRegex)?.length || 0) > 0); } const NUMBER_TOKEN = "number"; const COLOR_TOKEN = "color"; const VAR_TOKEN = "var"; const VAR_FUNCTION_TOKEN = "var("; const SPLIT_TOKEN = "${}"; // this regex consists of the `singleCssVariableRegex|rgbHSLValueRegex|digitRegex` const complexRegex = /var\s*\(\s*--(?:[\w-]+\s*|[\w-]+\s*,(?:\s*[^)(\s]|\s*\((?:[^)(]|\([^)(]*\))*\))+\s*)\)|#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\)|-?(?:\d+(?:\.\d+)?|\.\d+)/giu; function analyseComplexValue(value) { const originalValue = value.toString(); const values = []; const indexes = { color: [], number: [], var: [], }; const types = []; let i = 0; const tokenised = originalValue.replace(complexRegex, (parsedValue) => { if (color.test(parsedValue)) { indexes.color.push(i); types.push(COLOR_TOKEN); values.push(color.parse(parsedValue)); } else if (parsedValue.startsWith(VAR_FUNCTION_TOKEN)) { indexes.var.push(i); types.push(VAR_TOKEN); values.push(parsedValue); } else { indexes.number.push(i); types.push(NUMBER_TOKEN); values.push(parseFloat(parsedValue)); } ++i; return SPLIT_TOKEN; }); const split = tokenised.split(SPLIT_TOKEN); return { values, split, indexes, types }; } function parseComplexValue(v) { return analyseComplexValue(v).values; } function createTransformer(source) { const { split, types } = analyseComplexValue(source); const numSections = split.length; return (v) => { let output = ""; for (let i = 0; i < numSections; i++) { output += split[i]; if (v[i] !== undefined) { const type = types[i]; if (type === NUMBER_TOKEN) { output += sanitize(v[i]); } else if (type === COLOR_TOKEN) { output += color.transform(v[i]); } else { output += v[i]; } } } return output; }; } const convertNumbersToZero = (v) => typeof v === "number" ? 0 : v; function getAnimatableNone$1(v) { const parsed = parseComplexValue(v); const transformer = createTransformer(v); return transformer(parsed.map(convertNumbersToZero)); } const complex = { test, parse: parseComplexValue, createTransformer, getAnimatableNone: getAnimatableNone$1, }; /** * Properties that should default to 1 or 100% */ const maxDefaults = new Set(["brightness", "contrast", "saturate", "opacity"]); function applyDefaultFilter(v) { const [name, value] = v.slice(0, -1).split("("); if (name === "drop-shadow") return v; const [number] = value.match(floatRegex) || []; if (!number) return v; const unit = value.replace(number, ""); let defaultValue = maxDefaults.has(name) ? 1 : 0; if (number !== value) defaultValue *= 100; return name + "(" + defaultValue + unit + ")"; } const functionRegex = /\b([a-z-]*)\(.*?\)/gu; const filter = { ...complex, getAnimatableNone: (v) => { const functions = v.match(functionRegex); return functions ? functions.map(applyDefaultFilter).join(" ") : v; }, }; const browserNumberValueTypes = { // Border props borderWidth: px, borderTopWidth: px, borderRightWidth: px, borderBottomWidth: px, borderLeftWidth: px, borderRadius: px, radius: px, borderTopLeftRadius: px, borderTopRightRadius: px, borderBottomRightRadius: px, borderBottomLeftRadius: px, // Positioning props width: px, maxWidth: px, height: px, maxHeight: px, top: px, right: px, bottom: px, left: px, // Spacing props padding: px, paddingTop: px, paddingRight: px, paddingBottom: px, paddingLeft: px, margin: px, marginTop: px, marginRight: px, marginBottom: px, marginLeft: px, // Misc backgroundPositionX: px, backgroundPositionY: px, }; const transformValueTypes = { rotate: degrees, rotateX: degrees, rotateY: degrees, rotateZ: degrees, scale, scaleX: scale, scaleY: scale, scaleZ: scale, skew: degrees, skewX: degrees, skewY: degrees, distance: px, translateX: px, translateY: px, translateZ: px, x: px, y: px, z: px, perspective: px, transformPerspective: px, opacity: alpha, originX: progressPercentage, originY: progressPercentage, originZ: px, }; const int = { ...number, transform: Math.round, }; const numberValueTypes = { ...browserNumberValueTypes, ...transformValueTypes, zIndex: int, size: px, // SVG fillOpacity: alpha, strokeOpacity: alpha, numOctaves: int, }; /** * A map of default value types for common values */ const defaultValueTypes = { ...numberValueTypes, // Color props color, backgroundColor: color, outlineColor: color, fill: color, stroke: color, // Border props borderColor: color, borderTopColor: color, borderRightColor: color, borderBottomColor: color, borderLeftColor: color, filter, WebkitFilter: filter, }; /** * Gets the default ValueType for the provided value key */ const getDefaultValueType = (key) => defaultValueTypes[key]; function getAnimatableNone(key, value) { let defaultValueType = getDefaultValueType(key); if (defaultValueType !== filter) defaultValueType = complex; // If value is not recognised as animatable, ie "none", create an animatable version origin based on the target return defaultValueType.getAnimatableNone ? defaultValueType.getAnimatableNone(value) : undefined; } /** * If we encounter keyframes like "none" or "0" and we also have keyframes like * "#fff" or "200px 200px" we want to find a keyframe to serve as a template for * the "none" keyframes. In this case "#fff" or "200px 200px" - then these get turned into * zero equivalents, i.e. "#fff0" or "0px 0px". */ const invalidTemplates = new Set(["auto", "none", "0"]); function makeNoneKeyframesAnimatable(unresolvedKeyframes, noneKeyframeIndexes, name) { let i = 0; let animatableTemplate = undefined; while (i < unresolvedKeyframes.length && !animatableTemplate) { const keyframe = unresolvedKeyframes[i]; if (typeof keyframe === "string" && !invalidTemplates.has(keyframe) && analyseComplexValue(keyframe).values.length) { animatableTemplate = unresolvedKeyframes[i]; } i++; } if (animatableTemplate && name) { for (const noneIndex of noneKeyframeIndexes) { unresolvedKeyframes[noneIndex] = getAnimatableNone(name, animatableTemplate); } } } const radToDeg = (rad) => (rad * 180) / Math.PI; const rotate = (v) => { const angle = radToDeg(Math.atan2(v[1], v[0])); return rebaseAngle(angle); }; const matrix2dParsers = { x: 4, y: 5, translateX: 4, translateY: 5, scaleX: 0, scaleY: 3, scale: (v) => (Math.abs(v[0]) + Math.abs(v[3])) / 2, rotate, rotateZ: rotate, skewX: (v) => radToDeg(Math.atan(v[1])), skewY: (v) => radToDeg(Math.atan(v[2])), skew: (v) => (Math.abs(v[1]) + Math.abs(v[2])) / 2, }; const rebaseAngle = (angle) => { angle = angle % 360; if (angle < 0) angle += 360; return angle; }; const rotateZ = rotate; const scaleX = (v) => Math.sqrt(v[0] * v[0] + v[1] * v[1]); const scaleY = (v) => Math.sqrt(v[4] * v[4] + v[5] * v[5]); const matrix3dParsers = { x: 12, y: 13, z: 14, translateX: 12, translateY: 13, translateZ: 14, scaleX, scaleY, scale: (v) => (scaleX(v) + scaleY(v)) / 2, rotateX: (v) => rebaseAngle(radToDeg(Math.atan2(v[6], v[5]))), rotateY: (v) => rebaseAngle(radToDeg(Math.atan2(-v[2], v[0]))), rotateZ, rotate: rotateZ, skewX: (v) => radToDeg(Math.atan(v[4])), skewY: (v) => radToDeg(Math.atan(v[1])), skew: (v) => (Math.abs(v[1]) + Math.abs(v[4])) / 2, }; function defaultTransformValue(name) { return name.includes("scale") ? 1 : 0; } function parseValueFromTransform(transform, name) { if (!transform || transform === "none") { return defaultTransformValue(name); } const matrix3dMatch = transform.match(/^matrix3d\(([-\d.e\s,]+)\)$/u); let parsers; let match; if (matrix3dMatch) { parsers = matrix3dParsers; match = matrix3dMatch; } else { const matrix2dMatch = transform.match(/^matrix\(([-\d.e\s,]+)\)$/u); parsers = matrix2dParsers; match = matrix2dMatch; } if (!match) { return defaultTransformValue(name); } const valueParser = parsers[name]; const values = match[1].split(",").map(convertTransformToNumber); return typeof valueParser === "function" ? valueParser(values) : values[valueParser]; } const readTransformValue = (instance, name) => { const { transform = "none" } = getComputedStyle(instance); return parseValueFromTransform(transform, name); }; function convertTransformToNumber(value) { return parseFloat(value.trim()); } const isNumOrPxType = (v) => v === number || v === px; const transformKeys = new Set(["x", "y", "z"]); const nonTranslationalTransformKeys = transformPropOrder.filter((key) => !transformKeys.has(key)); function removeNonTranslationalTransform(visualElement) { const removedTransforms = []; nonTranslationalTransformKeys.forEach((key) => { const value = visualElement.getValue(key); if (value !== undefined) { removedTransforms.push([key, value.get()]); value.set(key.startsWith("scale") ? 1 : 0); } }); return removedTransforms; } const positionalValues = { // Dimensions width: ({ x }, { paddingLeft = "0", paddingRight = "0" }) => x.max - x.min - parseFloat(paddingLeft) - parseFloat(paddingRight), height: ({ y }, { paddingTop = "0", paddingBottom = "0" }) => y.max - y.min - parseFloat(paddingTop) - parseFloat(paddingBottom), top: (_bbox, { top }) => parseFloat(top), left: (_bbox, { left }) => parseFloat(left), bottom: ({ y }, { top }) => parseFloat(top) + (y.max - y.min), right: ({ x }, { left }) => parseFloat(left) + (x.max - x.min), // Transform x: (_bbox, { transform }) => parseValueFromTransform(transform, "x"), y: (_bbox, { transform }) => parseValueFromTransform(transform, "y"), }; // Alias translate longform names positionalValues.translateX = positionalValues.x; positionalValues.translateY = positionalValues.y; const toResolve = new Set(); let isScheduled = false; let anyNeedsMeasurement = false; function measureAllKeyframes() { if (anyNeedsMeasurement) { const resolversToMeasure = Array.from(toResolve).filter((resolver) => resolver.needsMeasurement); const elementsToMeasure = new Set(resolversToMeasure.map((resolver) => resolver.element)); const transformsToRestore = new Map(); /** * Write pass * If we're measuring elements we want to remove bounding box-changing transforms. */ elementsToMeasure.forEach((element) => { const removedTransforms = removeNonTranslationalTransform(element); if (!removedTransforms.length) return; transformsToRestore.set(element, removedTransforms); element.render(); }); // Read resolversToMeasure.forEach((resolver) => resolver.measureInitialState()); // Write elementsToMeasu