UNPKG

framer-motion

Version:

A simple and powerful JavaScript animation library

1,370 lines (1,287 loc) • 565 kB
(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('react')) : typeof define === 'function' && define.amd ? define(['exports', 'react'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.Motion = {}, global.React)); })(this, (function (exports, React$1) { 'use strict'; function _interopNamespaceDefault(e) { var n = Object.create(null); if (e) { Object.keys(e).forEach(function (k) { if (k !== 'default') { var d = Object.getOwnPropertyDescriptor(e, k); Object.defineProperty(n, k, d.get ? d : { enumerable: true, get: function () { return e[k]; } }); } }); } n.default = e; return Object.freeze(n); } var React__namespace = /*#__PURE__*/_interopNamespaceDefault(React$1); // source: react/cjs/react-jsx-runtime.production.min.js /** * @license React * react-jsx-runtime.production.min.js * * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ var f = React, k = Symbol.for("react.element"), l = Symbol.for("react.fragment"), m$1 = Object.prototype.hasOwnProperty, n = f.__SECRET_INTERNALS_DO_NOT_USE_OR_YOU_WILL_BE_FIRED.ReactCurrentOwner, p = { key: !0, ref: !0, __self: !0, __source: !0 }; function q(c, a, g) { var b, d = {}, e = null, h = null; void 0 !== g && (e = "" + g); void 0 !== a.key && (e = "" + a.key); void 0 !== a.ref && (h = a.ref); for (b in a) m$1.call(a, b) && !p.hasOwnProperty(b) && (d[b] = a[b]); if (c && c.defaultProps) for (b in ((a = c.defaultProps), a)) void 0 === d[b] && (d[b] = a[b]); return { $$typeof: k, type: c, key: e, ref: h, props: d, _owner: n.current } } const Fragment = l; const jsx = q; const jsxs = q; const LayoutGroupContext = React$1.createContext({}); /** * Creates a constant value over the lifecycle of a component. * * Even if `useMemo` is provided an empty array as its final argument, it doesn't offer * a guarantee that it won't re-run for performance reasons later on. By using `useConstant` * you can ensure that initialisers don't execute twice or more. */ function useConstant(init) { const ref = React$1.useRef(null); if (ref.current === null) { ref.current = init(); } return ref.current; } const isBrowser = typeof window !== "undefined"; const useIsomorphicLayoutEffect = isBrowser ? React$1.useLayoutEffect : React$1.useEffect; /** * @public */ const PresenceContext = /* @__PURE__ */ React$1.createContext(null); function addUniqueItem(arr, item) { if (arr.indexOf(item) === -1) arr.push(item); } function removeItem(arr, item) { const index = arr.indexOf(item); if (index > -1) arr.splice(index, 1); } // Adapted from array-move function moveItem([...arr], fromIndex, toIndex) { const startIndex = fromIndex < 0 ? arr.length + fromIndex : fromIndex; if (startIndex >= 0 && startIndex < arr.length) { const endIndex = toIndex < 0 ? arr.length + toIndex : toIndex; const [item] = arr.splice(fromIndex, 1); arr.splice(endIndex, 0, item); } return arr; } const clamp = (min, max, v) => { if (v > max) return max; if (v < min) return min; return v; }; exports.warning = () => { }; exports.invariant = () => { }; { exports.warning = (check, message) => { if (!check && typeof console !== "undefined") { console.warn(message); } }; exports.invariant = (check, message) => { if (!check) { throw new Error(message); } }; } const MotionGlobalConfig = {}; /** * Check if value is a numerical string, ie a string that is purely a number eg "100" or "-100.1" */ const isNumericalString = (v) => /^-?(?:\d+(?:\.\d+)?|\.\d+)$/u.test(v); function isObject(value) { return typeof value === "object" && value !== null; } /** * Check if the value is a zero value string like "0px" or "0%" */ const isZeroValueString = (v) => /^0[^.\s]+$/u.test(v); /*#__NO_SIDE_EFFECTS__*/ function memo(callback) { let result; return () => { if (result === undefined) result = callback(); return result; }; } /*#__NO_SIDE_EFFECTS__*/ const noop = (any) => any; /** * Pipe * Compose other transformers to run linearily * pipe(min(20), max(40)) * @param {...functions} transformers * @return {function} */ const combineFunctions = (a, b) => (v) => b(a(v)); const pipe = (...transformers) => transformers.reduce(combineFunctions); /* Progress within given range Given a lower limit and an upper limit, we return the progress (expressed as a number 0-1) represented by the given value, and limit that progress to within 0-1. @param [number]: Lower limit @param [number]: Upper limit @param [number]: Value to find progress within given range @return [number]: Progress of value within range as expressed 0-1 */ /*#__NO_SIDE_EFFECTS__*/ const progress = (from, to, value) => { const toFromDifference = to - from; return toFromDifference === 0 ? 1 : (value - from) / toFromDifference; }; class SubscriptionManager { constructor() { this.subscriptions = []; } add(handler) { addUniqueItem(this.subscriptions, handler); return () => removeItem(this.subscriptions, handler); } notify(a, b, c) { const numSubscriptions = this.subscriptions.length; if (!numSubscriptions) return; if (numSubscriptions === 1) { /** * If there's only a single handler we can just call it without invoking a loop. */ this.subscriptions[0](a, b, c); } else { for (let i = 0; i < numSubscriptions; i++) { /** * Check whether the handler exists before firing as it's possible * the subscriptions were modified during this loop running. */ const handler = this.subscriptions[i]; handler && handler(a, b, c); } } } getSize() { return this.subscriptions.length; } clear() { this.subscriptions.length = 0; } } /** * Converts seconds to milliseconds * * @param seconds - Time in seconds. * @return milliseconds - Converted time in milliseconds. */ /*#__NO_SIDE_EFFECTS__*/ const secondsToMilliseconds = (seconds) => seconds * 1000; /*#__NO_SIDE_EFFECTS__*/ const millisecondsToSeconds = (milliseconds) => milliseconds / 1000; /* Convert velocity into velocity per second @param [number]: Unit per frame @param [number]: Frame duration in ms */ function velocityPerSecond(velocity, frameDuration) { return frameDuration ? velocity * (1000 / frameDuration) : 0; } const warned = new Set(); function hasWarned$1(message) { return warned.has(message); } function warnOnce(condition, message, element) { if (condition || warned.has(message)) return; console.warn(message); if (element) console.warn(element); warned.add(message); } const wrap = (min, max, v) => { const rangeSize = max - min; return ((((v - min) % rangeSize) + rangeSize) % rangeSize) + min; }; /* Bezier function generator This has been modified from Gaƫtan Renaudeau's BezierEasing https://github.com/gre/bezier-easing/blob/master/src/index.js https://github.com/gre/bezier-easing/blob/master/LICENSE I've removed the newtonRaphsonIterate algo because in benchmarking it wasn't noticiably faster than binarySubdivision, indeed removing it usually improved times, depending on the curve. I also removed the lookup table, as for the added bundle size and loop we're only cutting ~4 or so subdivision iterations. I bumped the max iterations up to 12 to compensate and this still tended to be faster for no perceivable loss in accuracy. Usage const easeOut = cubicBezier(.17,.67,.83,.67); const x = easeOut(0.5); // returns 0.627... */ // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2. const calcBezier = (t, a1, a2) => (((1.0 - 3.0 * a2 + 3.0 * a1) * t + (3.0 * a2 - 6.0 * a1)) * t + 3.0 * a1) * t; const subdivisionPrecision = 0.0000001; const subdivisionMaxIterations = 12; function binarySubdivide(x, lowerBound, upperBound, mX1, mX2) { let currentX; let currentT; let i = 0; do { currentT = lowerBound + (upperBound - lowerBound) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - x; if (currentX > 0.0) { upperBound = currentT; } else { lowerBound = currentT; } } while (Math.abs(currentX) > subdivisionPrecision && ++i < subdivisionMaxIterations); return currentT; } function cubicBezier(mX1, mY1, mX2, mY2) { // If this is a linear gradient, return linear easing if (mX1 === mY1 && mX2 === mY2) return noop; const getTForX = (aX) => binarySubdivide(aX, 0, 1, mX1, mX2); // If animation is at start/end, return t without easing return (t) => t === 0 || t === 1 ? t : calcBezier(getTForX(t), mY1, mY2); } // Accepts an easing function and returns a new one that outputs mirrored values for // the second half of the animation. Turns easeIn into easeInOut. const mirrorEasing = (easing) => (p) => p <= 0.5 ? easing(2 * p) / 2 : (2 - easing(2 * (1 - p))) / 2; // Accepts an easing function and returns a new one that outputs reversed values. // Turns easeIn into easeOut. const reverseEasing = (easing) => (p) => 1 - easing(1 - p); const backOut = /*@__PURE__*/ cubicBezier(0.33, 1.53, 0.69, 0.99); const backIn = /*@__PURE__*/ reverseEasing(backOut); const backInOut = /*@__PURE__*/ mirrorEasing(backIn); const anticipate = (p) => (p *= 2) < 1 ? 0.5 * backIn(p) : 0.5 * (2 - Math.pow(2, -10 * (p - 1))); const circIn = (p) => 1 - Math.sin(Math.acos(p)); const circOut = reverseEasing(circIn); const circInOut = mirrorEasing(circIn); const easeIn = /*@__PURE__*/ cubicBezier(0.42, 0, 1, 1); const easeOut = /*@__PURE__*/ cubicBezier(0, 0, 0.58, 1); const easeInOut = /*@__PURE__*/ cubicBezier(0.42, 0, 0.58, 1); function steps(numSteps, direction = "end") { return (progress) => { progress = direction === "end" ? Math.min(progress, 0.999) : Math.max(progress, 0.001); const expanded = progress * numSteps; const rounded = direction === "end" ? Math.floor(expanded) : Math.ceil(expanded); return clamp(0, 1, rounded / numSteps); }; } const isEasingArray = (ease) => { return Array.isArray(ease) && typeof ease[0] !== "number"; }; function getEasingForSegment(easing, i) { return isEasingArray(easing) ? easing[wrap(0, easing.length, i)] : easing; } const isBezierDefinition = (easing) => Array.isArray(easing) && typeof easing[0] === "number"; const easingLookup = { linear: noop, easeIn, easeInOut, easeOut, circIn, circInOut, circOut, backIn, backInOut, backOut, anticipate, }; const isValidEasing = (easing) => { return typeof easing === "string"; }; const easingDefinitionToFunction = (definition) => { if (isBezierDefinition(definition)) { // If cubic bezier definition, create bezier curve exports.invariant(definition.length === 4, `Cubic bezier arrays must contain four numerical values.`); const [x1, y1, x2, y2] = definition; return cubicBezier(x1, y1, x2, y2); } else if (isValidEasing(definition)) { // Else lookup from table exports.invariant(easingLookup[definition] !== undefined, `Invalid easing type '${definition}'`); return easingLookup[definition]; } return definition; }; const stepsOrder = [ "setup", // Compute "read", // Read "resolveKeyframes", // Write/Read/Write/Read "preUpdate", // Compute "update", // Compute "preRender", // Compute "render", // Write "postRender", // Compute ]; const statsBuffer = { value: null, addProjectionMetrics: null, }; function createRenderStep(runNextFrame, stepName) { /** * We create and reuse two queues, one to queue jobs for the current frame * and one for the next. We reuse to avoid triggering GC after x frames. */ let thisFrame = new Set(); let nextFrame = new Set(); /** * Track whether we're currently processing jobs in this step. This way * we can decide whether to schedule new jobs for this frame or next. */ let isProcessing = false; let flushNextFrame = false; /** * A set of processes which were marked keepAlive when scheduled. */ const toKeepAlive = new WeakSet(); let latestFrameData = { delta: 0.0, timestamp: 0.0, isProcessing: false, }; let numCalls = 0; function triggerCallback(callback) { if (toKeepAlive.has(callback)) { step.schedule(callback); runNextFrame(); } numCalls++; callback(latestFrameData); } const step = { /** * Schedule a process to run on the next frame. */ schedule: (callback, keepAlive = false, immediate = false) => { const addToCurrentFrame = immediate && isProcessing; const queue = addToCurrentFrame ? thisFrame : nextFrame; if (keepAlive) toKeepAlive.add(callback); if (!queue.has(callback)) queue.add(callback); return callback; }, /** * Cancel the provided callback from running on the next frame. */ cancel: (callback) => { nextFrame.delete(callback); toKeepAlive.delete(callback); }, /** * Execute all schedule callbacks. */ process: (frameData) => { latestFrameData = frameData; /** * If we're already processing we've probably been triggered by a flushSync * inside an existing process. Instead of executing, mark flushNextFrame * as true and ensure we flush the following frame at the end of this one. */ if (isProcessing) { flushNextFrame = true; return; } isProcessing = true; [thisFrame, nextFrame] = [nextFrame, thisFrame]; // Execute this frame thisFrame.forEach(triggerCallback); /** * If we're recording stats then */ if (stepName && statsBuffer.value) { statsBuffer.value.frameloop[stepName].push(numCalls); } numCalls = 0; // Clear the frame so no callbacks remain. This is to avoid // memory leaks should this render step not run for a while. thisFrame.clear(); isProcessing = false; if (flushNextFrame) { flushNextFrame = false; step.process(frameData); } }, }; return step; } const maxElapsed$1 = 40; function createRenderBatcher(scheduleNextBatch, allowKeepAlive) { let runNextFrame = false; let useDefaultElapsed = true; const state = { delta: 0.0, timestamp: 0.0, isProcessing: false, }; const flagRunNextFrame = () => (runNextFrame = true); const steps = stepsOrder.reduce((acc, key) => { acc[key] = createRenderStep(flagRunNextFrame, allowKeepAlive ? key : undefined); return acc; }, {}); const { setup, read, resolveKeyframes, preUpdate, update, preRender, render, postRender, } = steps; const processBatch = () => { const timestamp = MotionGlobalConfig.useManualTiming ? state.timestamp : performance.now(); runNextFrame = false; if (!MotionGlobalConfig.useManualTiming) { state.delta = useDefaultElapsed ? 1000 / 60 : Math.max(Math.min(timestamp - state.timestamp, maxElapsed$1), 1); } state.timestamp = timestamp; state.isProcessing = true; // Unrolled render loop for better per-frame performance setup.process(state); read.process(state); resolveKeyframes.process(state); preUpdate.process(state); update.process(state); preRender.process(state); render.process(state); postRender.process(state); state.isProcessing = false; if (runNextFrame && allowKeepAlive) { useDefaultElapsed = false; scheduleNextBatch(processBatch); } }; const wake = () => { runNextFrame = true; useDefaultElapsed = true; if (!state.isProcessing) { scheduleNextBatch(processBatch); } }; const schedule = stepsOrder.reduce((acc, key) => { const step = steps[key]; acc[key] = (process, keepAlive = false, immediate = false) => { if (!runNextFrame) wake(); return step.schedule(process, keepAlive, immediate); }; return acc; }, {}); const cancel = (process) => { for (let i = 0; i < stepsOrder.length; i++) { steps[stepsOrder[i]].cancel(process); } }; return { schedule, cancel, state, steps }; } const { schedule: frame, cancel: cancelFrame, state: frameData, steps: frameSteps, } = /* @__PURE__ */ createRenderBatcher(typeof requestAnimationFrame !== "undefined" ? requestAnimationFrame : noop, true); let now; function clearTime() { now = undefined; } /** * An eventloop-synchronous alternative to performance.now(). * * Ensures that time measurements remain consistent within a synchronous context. * Usually calling performance.now() twice within the same synchronous context * will return different values which isn't useful for animations when we're usually * trying to sync animations to the same frame. */ const time = { now: () => { if (now === undefined) { time.set(frameData.isProcessing || MotionGlobalConfig.useManualTiming ? frameData.timestamp : performance.now()); } return now; }, set: (newTime) => { now = newTime; queueMicrotask(clearTime); }, }; const activeAnimations = { layout: 0, mainThread: 0, waapi: 0, }; const checkStringStartsWith = (token) => (key) => typeof key === "string" && key.startsWith(token); const isCSSVariableName = /*@__PURE__*/ checkStringStartsWith("--"); const startsAsVariableToken = /*@__PURE__*/ checkStringStartsWith("var(--"); const isCSSVariableToken = (value) => { const startsWithToken = startsAsVariableToken(value); if (!startsWithToken) return false; // Ensure any comments are stripped from the value as this can harm performance of the regex. return singleCssVariableRegex.test(value.split("/*")[0].trim()); }; const singleCssVariableRegex = /var\(--(?:[\w-]+\s*|[\w-]+\s*,(?:\s*[^)(\s]|\s*\((?:[^)(]|\([^)(]*\))*\))+\s*)\)$/iu; const number = { test: (v) => typeof v === "number", parse: parseFloat, transform: (v) => v, }; const alpha = { ...number, transform: (v) => clamp(0, 1, v), }; const scale = { ...number, default: 1, }; // If this number is a decimal, make it just five decimal places // to avoid exponents const sanitize = (v) => Math.round(v * 100000) / 100000; const floatRegex = /-?(?:\d+(?:\.\d+)?|\.\d+)/gu; function isNullish(v) { return v == null; } const singleColorRegex = /^(?:#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\))$/iu; /** * Returns true if the provided string is a color, ie rgba(0,0,0,0) or #000, * but false if a number or multiple colors */ const isColorString = (type, testProp) => (v) => { return Boolean((typeof v === "string" && singleColorRegex.test(v) && v.startsWith(type)) || (testProp && !isNullish(v) && Object.prototype.hasOwnProperty.call(v, testProp))); }; const splitColor = (aName, bName, cName) => (v) => { if (typeof v !== "string") return v; const [a, b, c, alpha] = v.match(floatRegex); return { [aName]: parseFloat(a), [bName]: parseFloat(b), [cName]: parseFloat(c), alpha: alpha !== undefined ? parseFloat(alpha) : 1, }; }; const clampRgbUnit = (v) => clamp(0, 255, v); const rgbUnit = { ...number, transform: (v) => Math.round(clampRgbUnit(v)), }; const rgba = { test: /*@__PURE__*/ isColorString("rgb", "red"), parse: /*@__PURE__*/ splitColor("red", "green", "blue"), transform: ({ red, green, blue, alpha: alpha$1 = 1 }) => "rgba(" + rgbUnit.transform(red) + ", " + rgbUnit.transform(green) + ", " + rgbUnit.transform(blue) + ", " + sanitize(alpha.transform(alpha$1)) + ")", }; function parseHex(v) { let r = ""; let g = ""; let b = ""; let a = ""; // If we have 6 characters, ie #FF0000 if (v.length > 5) { r = v.substring(1, 3); g = v.substring(3, 5); b = v.substring(5, 7); a = v.substring(7, 9); // Or we have 3 characters, ie #F00 } else { r = v.substring(1, 2); g = v.substring(2, 3); b = v.substring(3, 4); a = v.substring(4, 5); r += r; g += g; b += b; a += a; } return { red: parseInt(r, 16), green: parseInt(g, 16), blue: parseInt(b, 16), alpha: a ? parseInt(a, 16) / 255 : 1, }; } const hex = { test: /*@__PURE__*/ isColorString("#"), parse: parseHex, transform: rgba.transform, }; /*#__NO_SIDE_EFFECTS__*/ const createUnitType = (unit) => ({ test: (v) => typeof v === "string" && v.endsWith(unit) && v.split(" ").length === 1, parse: parseFloat, transform: (v) => `${v}${unit}`, }); const degrees = /*@__PURE__*/ createUnitType("deg"); const percent = /*@__PURE__*/ createUnitType("%"); const px = /*@__PURE__*/ createUnitType("px"); const vh = /*@__PURE__*/ createUnitType("vh"); const vw = /*@__PURE__*/ createUnitType("vw"); const progressPercentage = /*@__PURE__*/ (() => ({ ...percent, parse: (v) => percent.parse(v) / 100, transform: (v) => percent.transform(v * 100), }))(); const hsla = { test: /*@__PURE__*/ isColorString("hsl", "hue"), parse: /*@__PURE__*/ splitColor("hue", "saturation", "lightness"), transform: ({ hue, saturation, lightness, alpha: alpha$1 = 1 }) => { return ("hsla(" + Math.round(hue) + ", " + percent.transform(sanitize(saturation)) + ", " + percent.transform(sanitize(lightness)) + ", " + sanitize(alpha.transform(alpha$1)) + ")"); }, }; const color = { test: (v) => rgba.test(v) || hex.test(v) || hsla.test(v), parse: (v) => { if (rgba.test(v)) { return rgba.parse(v); } else if (hsla.test(v)) { return hsla.parse(v); } else { return hex.parse(v); } }, transform: (v) => { return typeof v === "string" ? v : v.hasOwnProperty("red") ? rgba.transform(v) : hsla.transform(v); }, }; const colorRegex = /(?:#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\))/giu; function test(v) { return (isNaN(v) && typeof v === "string" && (v.match(floatRegex)?.length || 0) + (v.match(colorRegex)?.length || 0) > 0); } const NUMBER_TOKEN = "number"; const COLOR_TOKEN = "color"; const VAR_TOKEN = "var"; const VAR_FUNCTION_TOKEN = "var("; const SPLIT_TOKEN = "${}"; // this regex consists of the `singleCssVariableRegex|rgbHSLValueRegex|digitRegex` const complexRegex = /var\s*\(\s*--(?:[\w-]+\s*|[\w-]+\s*,(?:\s*[^)(\s]|\s*\((?:[^)(]|\([^)(]*\))*\))+\s*)\)|#[\da-f]{3,8}|(?:rgb|hsl)a?\((?:-?[\d.]+%?[,\s]+){2}-?[\d.]+%?\s*(?:[,/]\s*)?(?:\b\d+(?:\.\d+)?|\.\d+)?%?\)|-?(?:\d+(?:\.\d+)?|\.\d+)/giu; function analyseComplexValue(value) { const originalValue = value.toString(); const values = []; const indexes = { color: [], number: [], var: [], }; const types = []; let i = 0; const tokenised = originalValue.replace(complexRegex, (parsedValue) => { if (color.test(parsedValue)) { indexes.color.push(i); types.push(COLOR_TOKEN); values.push(color.parse(parsedValue)); } else if (parsedValue.startsWith(VAR_FUNCTION_TOKEN)) { indexes.var.push(i); types.push(VAR_TOKEN); values.push(parsedValue); } else { indexes.number.push(i); types.push(NUMBER_TOKEN); values.push(parseFloat(parsedValue)); } ++i; return SPLIT_TOKEN; }); const split = tokenised.split(SPLIT_TOKEN); return { values, split, indexes, types }; } function parseComplexValue(v) { return analyseComplexValue(v).values; } function createTransformer(source) { const { split, types } = analyseComplexValue(source); const numSections = split.length; return (v) => { let output = ""; for (let i = 0; i < numSections; i++) { output += split[i]; if (v[i] !== undefined) { const type = types[i]; if (type === NUMBER_TOKEN) { output += sanitize(v[i]); } else if (type === COLOR_TOKEN) { output += color.transform(v[i]); } else { output += v[i]; } } } return output; }; } const convertNumbersToZero = (v) => typeof v === "number" ? 0 : v; function getAnimatableNone$1(v) { const parsed = parseComplexValue(v); const transformer = createTransformer(v); return transformer(parsed.map(convertNumbersToZero)); } const complex = { test, parse: parseComplexValue, createTransformer, getAnimatableNone: getAnimatableNone$1, }; // Adapted from https://gist.github.com/mjackson/5311256 function hueToRgb(p, q, t) { if (t < 0) t += 1; if (t > 1) t -= 1; if (t < 1 / 6) return p + (q - p) * 6 * t; if (t < 1 / 2) return q; if (t < 2 / 3) return p + (q - p) * (2 / 3 - t) * 6; return p; } function hslaToRgba({ hue, saturation, lightness, alpha }) { hue /= 360; saturation /= 100; lightness /= 100; let red = 0; let green = 0; let blue = 0; if (!saturation) { red = green = blue = lightness; } else { const q = lightness < 0.5 ? lightness * (1 + saturation) : lightness + saturation - lightness * saturation; const p = 2 * lightness - q; red = hueToRgb(p, q, hue + 1 / 3); green = hueToRgb(p, q, hue); blue = hueToRgb(p, q, hue - 1 / 3); } return { red: Math.round(red * 255), green: Math.round(green * 255), blue: Math.round(blue * 255), alpha, }; } function mixImmediate(a, b) { return (p) => (p > 0 ? b : a); } /* Value in range from progress Given a lower limit and an upper limit, we return the value within that range as expressed by progress (usually a number from 0 to 1) So progress = 0.5 would change from -------- to to from ---- to E.g. from = 10, to = 20, progress = 0.5 => 15 @param [number]: Lower limit of range @param [number]: Upper limit of range @param [number]: The progress between lower and upper limits expressed 0-1 @return [number]: Value as calculated from progress within range (not limited within range) */ const mixNumber$1 = (from, to, progress) => { return from + (to - from) * progress; }; // Linear color space blending // Explained https://www.youtube.com/watch?v=LKnqECcg6Gw // Demonstrated http://codepen.io/osublake/pen/xGVVaN const mixLinearColor = (from, to, v) => { const fromExpo = from * from; const expo = v * (to * to - fromExpo) + fromExpo; return expo < 0 ? 0 : Math.sqrt(expo); }; const colorTypes = [hex, rgba, hsla]; const getColorType = (v) => colorTypes.find((type) => type.test(v)); function asRGBA(color) { const type = getColorType(color); exports.warning(Boolean(type), `'${color}' is not an animatable color. Use the equivalent color code instead.`); if (!Boolean(type)) return false; let model = type.parse(color); if (type === hsla) { // TODO Remove this cast - needed since Motion's stricter typing model = hslaToRgba(model); } return model; } const mixColor = (from, to) => { const fromRGBA = asRGBA(from); const toRGBA = asRGBA(to); if (!fromRGBA || !toRGBA) { return mixImmediate(from, to); } const blended = { ...fromRGBA }; return (v) => { blended.red = mixLinearColor(fromRGBA.red, toRGBA.red, v); blended.green = mixLinearColor(fromRGBA.green, toRGBA.green, v); blended.blue = mixLinearColor(fromRGBA.blue, toRGBA.blue, v); blended.alpha = mixNumber$1(fromRGBA.alpha, toRGBA.alpha, v); return rgba.transform(blended); }; }; const invisibleValues = new Set(["none", "hidden"]); /** * Returns a function that, when provided a progress value between 0 and 1, * will return the "none" or "hidden" string only when the progress is that of * the origin or target. */ function mixVisibility(origin, target) { if (invisibleValues.has(origin)) { return (p) => (p <= 0 ? origin : target); } else { return (p) => (p >= 1 ? target : origin); } } function mixNumber(a, b) { return (p) => mixNumber$1(a, b, p); } function getMixer(a) { if (typeof a === "number") { return mixNumber; } else if (typeof a === "string") { return isCSSVariableToken(a) ? mixImmediate : color.test(a) ? mixColor : mixComplex; } else if (Array.isArray(a)) { return mixArray; } else if (typeof a === "object") { return color.test(a) ? mixColor : mixObject; } return mixImmediate; } function mixArray(a, b) { const output = [...a]; const numValues = output.length; const blendValue = a.map((v, i) => getMixer(v)(v, b[i])); return (p) => { for (let i = 0; i < numValues; i++) { output[i] = blendValue[i](p); } return output; }; } function mixObject(a, b) { const output = { ...a, ...b }; const blendValue = {}; for (const key in output) { if (a[key] !== undefined && b[key] !== undefined) { blendValue[key] = getMixer(a[key])(a[key], b[key]); } } return (v) => { for (const key in blendValue) { output[key] = blendValue[key](v); } return output; }; } function matchOrder(origin, target) { const orderedOrigin = []; const pointers = { color: 0, var: 0, number: 0 }; for (let i = 0; i < target.values.length; i++) { const type = target.types[i]; const originIndex = origin.indexes[type][pointers[type]]; const originValue = origin.values[originIndex] ?? 0; orderedOrigin[i] = originValue; pointers[type]++; } return orderedOrigin; } const mixComplex = (origin, target) => { const template = complex.createTransformer(target); const originStats = analyseComplexValue(origin); const targetStats = analyseComplexValue(target); const canInterpolate = originStats.indexes.var.length === targetStats.indexes.var.length && originStats.indexes.color.length === targetStats.indexes.color.length && originStats.indexes.number.length >= targetStats.indexes.number.length; if (canInterpolate) { if ((invisibleValues.has(origin) && !targetStats.values.length) || (invisibleValues.has(target) && !originStats.values.length)) { return mixVisibility(origin, target); } return pipe(mixArray(matchOrder(originStats, targetStats), targetStats.values), template); } else { exports.warning(true, `Complex values '${origin}' and '${target}' too different to mix. Ensure all colors are of the same type, and that each contains the same quantity of number and color values. Falling back to instant transition.`); return mixImmediate(origin, target); } }; function mix(from, to, p) { if (typeof from === "number" && typeof to === "number" && typeof p === "number") { return mixNumber$1(from, to, p); } const mixer = getMixer(from); return mixer(from, to); } const frameloopDriver = (update) => { const passTimestamp = ({ timestamp }) => update(timestamp); return { start: (keepAlive = true) => frame.update(passTimestamp, keepAlive), stop: () => cancelFrame(passTimestamp), /** * If we're processing this frame we can use the * framelocked timestamp to keep things in sync. */ now: () => (frameData.isProcessing ? frameData.timestamp : time.now()), }; }; const generateLinearEasing = (easing, duration, // as milliseconds resolution = 10 // as milliseconds ) => { let points = ""; const numPoints = Math.max(Math.round(duration / resolution), 2); for (let i = 0; i < numPoints; i++) { points += easing(i / (numPoints - 1)) + ", "; } return `linear(${points.substring(0, points.length - 2)})`; }; /** * Implement a practical max duration for keyframe generation * to prevent infinite loops */ const maxGeneratorDuration = 20000; function calcGeneratorDuration(generator) { let duration = 0; const timeStep = 50; let state = generator.next(duration); while (!state.done && duration < maxGeneratorDuration) { duration += timeStep; state = generator.next(duration); } return duration >= maxGeneratorDuration ? Infinity : duration; } /** * Create a progress => progress easing function from a generator. */ function createGeneratorEasing(options, scale = 100, createGenerator) { const generator = createGenerator({ ...options, keyframes: [0, scale] }); const duration = Math.min(calcGeneratorDuration(generator), maxGeneratorDuration); return { type: "keyframes", ease: (progress) => { return generator.next(duration * progress).value / scale; }, duration: millisecondsToSeconds(duration), }; } const velocitySampleDuration = 5; // ms function calcGeneratorVelocity(resolveValue, t, current) { const prevT = Math.max(t - velocitySampleDuration, 0); return velocityPerSecond(current - resolveValue(prevT), t - prevT); } const springDefaults = { // Default spring physics stiffness: 100, damping: 10, mass: 1.0, velocity: 0.0, // Default duration/bounce-based options duration: 800, // in ms bounce: 0.3, visualDuration: 0.3, // in seconds // Rest thresholds restSpeed: { granular: 0.01, default: 2, }, restDelta: { granular: 0.005, default: 0.5, }, // Limits minDuration: 0.01, // in seconds maxDuration: 10.0, // in seconds minDamping: 0.05, maxDamping: 1, }; const safeMin = 0.001; function findSpring({ duration = springDefaults.duration, bounce = springDefaults.bounce, velocity = springDefaults.velocity, mass = springDefaults.mass, }) { let envelope; let derivative; exports.warning(duration <= secondsToMilliseconds(springDefaults.maxDuration), "Spring duration must be 10 seconds or less"); let dampingRatio = 1 - bounce; /** * Restrict dampingRatio and duration to within acceptable ranges. */ dampingRatio = clamp(springDefaults.minDamping, springDefaults.maxDamping, dampingRatio); duration = clamp(springDefaults.minDuration, springDefaults.maxDuration, millisecondsToSeconds(duration)); if (dampingRatio < 1) { /** * Underdamped spring */ envelope = (undampedFreq) => { const exponentialDecay = undampedFreq * dampingRatio; const delta = exponentialDecay * duration; const a = exponentialDecay - velocity; const b = calcAngularFreq(undampedFreq, dampingRatio); const c = Math.exp(-delta); return safeMin - (a / b) * c; }; derivative = (undampedFreq) => { const exponentialDecay = undampedFreq * dampingRatio; const delta = exponentialDecay * duration; const d = delta * velocity + velocity; const e = Math.pow(dampingRatio, 2) * Math.pow(undampedFreq, 2) * duration; const f = Math.exp(-delta); const g = calcAngularFreq(Math.pow(undampedFreq, 2), dampingRatio); const factor = -envelope(undampedFreq) + safeMin > 0 ? -1 : 1; return (factor * ((d - e) * f)) / g; }; } else { /** * Critically-damped spring */ envelope = (undampedFreq) => { const a = Math.exp(-undampedFreq * duration); const b = (undampedFreq - velocity) * duration + 1; return -safeMin + a * b; }; derivative = (undampedFreq) => { const a = Math.exp(-undampedFreq * duration); const b = (velocity - undampedFreq) * (duration * duration); return a * b; }; } const initialGuess = 5 / duration; const undampedFreq = approximateRoot(envelope, derivative, initialGuess); duration = secondsToMilliseconds(duration); if (isNaN(undampedFreq)) { return { stiffness: springDefaults.stiffness, damping: springDefaults.damping, duration, }; } else { const stiffness = Math.pow(undampedFreq, 2) * mass; return { stiffness, damping: dampingRatio * 2 * Math.sqrt(mass * stiffness), duration, }; } } const rootIterations = 12; function approximateRoot(envelope, derivative, initialGuess) { let result = initialGuess; for (let i = 1; i < rootIterations; i++) { result = result - envelope(result) / derivative(result); } return result; } function calcAngularFreq(undampedFreq, dampingRatio) { return undampedFreq * Math.sqrt(1 - dampingRatio * dampingRatio); } const durationKeys = ["duration", "bounce"]; const physicsKeys = ["stiffness", "damping", "mass"]; function isSpringType(options, keys) { return keys.some((key) => options[key] !== undefined); } function getSpringOptions(options) { let springOptions = { velocity: springDefaults.velocity, stiffness: springDefaults.stiffness, damping: springDefaults.damping, mass: springDefaults.mass, isResolvedFromDuration: false, ...options, }; // stiffness/damping/mass overrides duration/bounce if (!isSpringType(options, physicsKeys) && isSpringType(options, durationKeys)) { if (options.visualDuration) { const visualDuration = options.visualDuration; const root = (2 * Math.PI) / (visualDuration * 1.2); const stiffness = root * root; const damping = 2 * clamp(0.05, 1, 1 - (options.bounce || 0)) * Math.sqrt(stiffness); springOptions = { ...springOptions, mass: springDefaults.mass, stiffness, damping, }; } else { const derived = findSpring(options); springOptions = { ...springOptions, ...derived, mass: springDefaults.mass, }; springOptions.isResolvedFromDuration = true; } } return springOptions; } function spring(optionsOrVisualDuration = springDefaults.visualDuration, bounce = springDefaults.bounce) { const options = typeof optionsOrVisualDuration !== "object" ? { visualDuration: optionsOrVisualDuration, keyframes: [0, 1], bounce, } : optionsOrVisualDuration; let { restSpeed, restDelta } = options; const origin = options.keyframes[0]; const target = options.keyframes[options.keyframes.length - 1]; /** * This is the Iterator-spec return value. We ensure it's mutable rather than using a generator * to reduce GC during animation. */ const state = { done: false, value: origin }; const { stiffness, damping, mass, duration, velocity, isResolvedFromDuration, } = getSpringOptions({ ...options, velocity: -millisecondsToSeconds(options.velocity || 0), }); const initialVelocity = velocity || 0.0; const dampingRatio = damping / (2 * Math.sqrt(stiffness * mass)); const initialDelta = target - origin; const undampedAngularFreq = millisecondsToSeconds(Math.sqrt(stiffness / mass)); /** * If we're working on a granular scale, use smaller defaults for determining * when the spring is finished. * * These defaults have been selected emprically based on what strikes a good * ratio between feeling good and finishing as soon as changes are imperceptible. */ const isGranularScale = Math.abs(initialDelta) < 5; restSpeed || (restSpeed = isGranularScale ? springDefaults.restSpeed.granular : springDefaults.restSpeed.default); restDelta || (restDelta = isGranularScale ? springDefaults.restDelta.granular : springDefaults.restDelta.default); let resolveSpring; if (dampingRatio < 1) { const angularFreq = calcAngularFreq(undampedAngularFreq, dampingRatio); // Underdamped spring resolveSpring = (t) => { const envelope = Math.exp(-dampingRatio * undampedAngularFreq * t); return (target - envelope * (((initialVelocity + dampingRatio * undampedAngularFreq * initialDelta) / angularFreq) * Math.sin(angularFreq * t) + initialDelta * Math.cos(angularFreq * t))); }; } else if (dampingRatio === 1) { // Critically damped spring resolveSpring = (t) => target - Math.exp(-undampedAngularFreq * t) * (initialDelta + (initialVelocity + undampedAngularFreq * initialDelta) * t); } else { // Overdamped spring const dampedAngularFreq = undampedAngularFreq * Math.sqrt(dampingRatio * dampingRatio - 1); resolveSpring = (t) => { const envelope = Math.exp(-dampingRatio * undampedAngularFreq * t); // When performing sinh or cosh values can hit Infinity so we cap them here const freqForT = Math.min(dampedAngularFreq * t, 300); return (target - (envelope * ((initialVelocity + dampingRatio * undampedAngularFreq * initialDelta) * Math.sinh(freqForT) + dampedAngularFreq * initialDelta * Math.cosh(freqForT))) / dampedAngularFreq); }; } const generator = { calculatedDuration: isResolvedFromDuration ? duration || null : null, next: (t) => { const current = resolveSpring(t); if (!isResolvedFromDuration) { let currentVelocity = t === 0 ? initialVelocity : 0.0; /** * We only need to calculate velocity for under-damped springs * as over- and critically-damped springs can't overshoot, so * checking only for displacement is enough. */ if (dampingRatio < 1) { currentVelocity = t === 0 ? secondsToMilliseconds(initialVelocity) : calcGeneratorVel