fp-ts
Version:
Functional programming in TypeScript
346 lines (345 loc) • 9.56 kB
TypeScript
/**
* Multi-way trees (aka rose trees) and forests, where a forest is
*
* ```ts
* type Forest<A> = Array<Tree<A>>
* ```
*
* @since 2.0.0
*/
import { Applicative1 } from './Applicative'
import { Comonad1 } from './Comonad'
import { Eq } from './Eq'
import { Foldable1 } from './Foldable'
import { Functor1 } from './Functor'
import { HKT, Kind, Kind2, Kind3, URIS, URIS2, URIS3 } from './HKT'
import { Monad as MonadHKT, Monad1, Monad2, Monad2C, Monad3, Monad3C } from './Monad'
import { Monoid } from './Monoid'
import { Show } from './Show'
import { PipeableTraverse1, Traversable1 } from './Traversable'
/**
* @category model
* @since 2.0.0
*/
export declare type Forest<A> = Array<Tree<A>>
/**
* @category model
* @since 2.0.0
*/
export interface Tree<A> {
readonly value: A
readonly forest: Forest<A>
}
/**
* @category constructors
* @since 2.0.0
*/
export declare function make<A>(value: A, forest?: Forest<A>): Tree<A>
/**
* @category instances
* @since 2.0.0
*/
export declare function getShow<A>(S: Show<A>): Show<Tree<A>>
/**
* @category instances
* @since 2.0.0
*/
export declare function getEq<A>(E: Eq<A>): Eq<Tree<A>>
/**
* Neat 2-dimensional drawing of a forest
*
* @since 2.0.0
*/
export declare function drawForest(forest: Forest<string>): string
/**
* Neat 2-dimensional drawing of a tree
*
* @example
* import { make, drawTree, tree } from 'fp-ts/Tree'
*
* const fa = make('a', [
* tree.of('b'),
* tree.of('c'),
* make('d', [tree.of('e'), tree.of('f')])
* ])
*
* assert.strictEqual(drawTree(fa), `a
* ├─ b
* ├─ c
* └─ d
* ├─ e
* └─ f`)
*
*
* @since 2.0.0
*/
export declare function drawTree(tree: Tree<string>): string
/**
* Build a tree from a seed value
*
* @category constructors
* @since 2.0.0
*/
export declare function unfoldTree<A, B>(b: B, f: (b: B) => [A, Array<B>]): Tree<A>
/**
* Build a tree from a seed value
*
* @category constructors
* @since 2.0.0
*/
export declare function unfoldForest<A, B>(bs: Array<B>, f: (b: B) => [A, Array<B>]): Forest<A>
/**
* Monadic tree builder, in depth-first order
*
* @category constructors
* @since 2.0.0
*/
export declare function unfoldTreeM<M extends URIS3>(
M: Monad3<M>
): <R, E, A, B>(b: B, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Tree<A>>
export declare function unfoldTreeM<M extends URIS3, E>(
M: Monad3C<M, E>
): <R, A, B>(b: B, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Tree<A>>
export declare function unfoldTreeM<M extends URIS2>(
M: Monad2<M>
): <E, A, B>(b: B, f: (b: B) => Kind2<M, E, [A, Array<B>]>) => Kind2<M, E, Tree<A>>
export declare function unfoldTreeM<M extends URIS2, E>(
M: Monad2C<M, E>
): <A, B>(b: B, f: (b: B) => Kind2<M, E, [A, Array<B>]>) => Kind2<M, E, Tree<A>>
export declare function unfoldTreeM<M extends URIS>(
M: Monad1<M>
): <A, B>(b: B, f: (b: B) => Kind<M, [A, Array<B>]>) => Kind<M, Tree<A>>
export declare function unfoldTreeM<M>(
M: MonadHKT<M>
): <A, B>(b: B, f: (b: B) => HKT<M, [A, Array<B>]>) => HKT<M, Tree<A>>
/**
* Monadic forest builder, in depth-first order
*
* @category constructors
* @since 2.0.0
*/
export declare function unfoldForestM<M extends URIS3>(
M: Monad3<M>
): <R, E, A, B>(bs: Array<B>, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Forest<A>>
export declare function unfoldForestM<M extends URIS3, E>(
M: Monad3C<M, E>
): <R, A, B>(bs: Array<B>, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Forest<A>>
export declare function unfoldForestM<M extends URIS2>(
M: Monad2<M>
): <R, E, B>(bs: Array<B>, f: (b: B) => Kind2<M, R, [E, Array<B>]>) => Kind2<M, R, Forest<E>>
export declare function unfoldForestM<M extends URIS2, E>(
M: Monad2C<M, E>
): <A, B>(bs: Array<B>, f: (b: B) => Kind2<M, E, [A, Array<B>]>) => Kind2<M, E, Forest<A>>
export declare function unfoldForestM<M extends URIS>(
M: Monad1<M>
): <A, B>(bs: Array<B>, f: (b: B) => Kind<M, [A, Array<B>]>) => Kind<M, Forest<A>>
export declare function unfoldForestM<M>(
M: MonadHKT<M>
): <A, B>(bs: Array<B>, f: (b: B) => HKT<M, [A, Array<B>]>) => HKT<M, Forest<A>>
/**
* @since 2.0.0
*/
export declare function elem<A>(E: Eq<A>): (a: A, fa: Tree<A>) => boolean
/**
* Fold a tree into a "summary" value in depth-first order.
*
* For each node in the tree, apply `f` to the `value` and the result of applying `f` to each `forest`.
*
* This is also known as the catamorphism on trees.
*
* @example
* import { fold, make } from 'fp-ts/Tree'
*
* const t = make(1, [make(2), make(3)])
*
* const sum = (as: Array<number>) => as.reduce((a, acc) => a + acc, 0)
*
* // Sum the values in a tree:
* assert.deepStrictEqual(fold((a: number, bs: Array<number>) => a + sum(bs))(t), 6)
*
* // Find the maximum value in the tree:
* assert.deepStrictEqual(fold((a: number, bs: Array<number>) => bs.reduce((b, acc) => Math.max(b, acc), a))(t), 3)
*
* // Count the number of leaves in the tree:
* assert.deepStrictEqual(fold((_: number, bs: Array<number>) => (bs.length === 0 ? 1 : sum(bs)))(t), 2)
*
* @category destructors
* @since 2.6.0
*/
export declare function fold<A, B>(f: (a: A, bs: Array<B>) => B): (tree: Tree<A>) => B
/**
* Apply a function to an argument under a type constructor.
*
* @category Apply
* @since 2.0.0
*/
export declare const ap: <A>(fa: Tree<A>) => <B>(fab: Tree<(a: A) => B>) => Tree<B>
/**
* Combine two effectful actions, keeping only the result of the first.
*
* Derivable from `Apply`.
*
* @category combinators
* @since 2.0.0
*/
export declare const apFirst: <B>(fb: Tree<B>) => <A>(fa: Tree<A>) => Tree<A>
/**
* Combine two effectful actions, keeping only the result of the second.
*
* Derivable from `Apply`.
*
* @category combinators
* @since 2.0.0
*/
export declare const apSecond: <B>(fb: Tree<B>) => <A>(fa: Tree<A>) => Tree<B>
/**
* Composes computations in sequence, using the return value of one computation to determine the next computation.
*
* @category Monad
* @since 2.0.0
*/
export declare const chain: <A, B>(f: (a: A) => Tree<B>) => (ma: Tree<A>) => Tree<B>
/**
* Composes computations in sequence, using the return value of one computation to determine the next computation and
* keeping only the result of the first.
*
* Derivable from `Monad`.
*
* @category combinators
* @since 2.0.0
*/
export declare const chainFirst: <A, B>(f: (a: A) => Tree<B>) => (ma: Tree<A>) => Tree<A>
/**
* @category Extend
* @since 2.0.0
*/
export declare const extend: <A, B>(f: (wa: Tree<A>) => B) => (wa: Tree<A>) => Tree<B>
/**
* Derivable from `Extend`.
*
* @category combinators
* @since 2.0.0
*/
export declare const duplicate: <A>(wa: Tree<A>) => Tree<Tree<A>>
/**
* Derivable from `Monad`.
*
* @category combinators
* @since 2.0.0
*/
export declare const flatten: <A>(mma: Tree<Tree<A>>) => Tree<A>
/**
* `map` can be used to turn functions `(a: A) => B` into functions `(fa: F<A>) => F<B>` whose argument and return types
* use the type constructor `F` to represent some computational context.
*
* @category Functor
* @since 2.0.0
*/
export declare const map: <A, B>(f: (a: A) => B) => (fa: Tree<A>) => Tree<B>
/**
* @category Foldable
* @since 2.0.0
*/
export declare const reduce: <A, B>(b: B, f: (b: B, a: A) => B) => (fa: Tree<A>) => B
/**
* @category Foldable
* @since 2.0.0
*/
export declare const foldMap: <M>(M: Monoid<M>) => <A>(f: (a: A) => M) => (fa: Tree<A>) => M
/**
* @category Foldable
* @since 2.0.0
*/
export declare const reduceRight: <A, B>(b: B, f: (a: A, b: B) => B) => (fa: Tree<A>) => B
/**
* @category Extract
* @since 2.6.2
*/
export declare const extract: <A>(wa: Tree<A>) => A
/**
* @since 2.6.3
*/
export declare const traverse: PipeableTraverse1<URI>
/**
* @since 2.6.3
*/
export declare const sequence: Traversable1<URI>['sequence']
/**
* Wrap a value into the type constructor.
*
* @category Applicative
* @since 2.7.0
*/
export declare const of: Applicative1<URI>['of']
/**
* @category instances
* @since 2.0.0
*/
export declare const URI = 'Tree'
/**
* @category instances
* @since 2.0.0
*/
export declare type URI = typeof URI
declare module './HKT' {
interface URItoKind<A> {
readonly [URI]: Tree<A>
}
}
/**
* @category instances
* @since 2.7.0
*/
export declare const Functor: Functor1<URI>
/**
* @category instances
* @since 2.7.0
*/
export declare const Applicative: Applicative1<URI>
/**
* @category instances
* @since 2.7.0
*/
export declare const Monad: Monad1<URI>
/**
* @category instances
* @since 2.7.0
*/
export declare const Foldable: Foldable1<URI>
/**
* @category instances
* @since 2.7.0
*/
export declare const Traversable: Traversable1<URI>
/**
* @category instances
* @since 2.7.0
*/
export declare const Comonad: Comonad1<URI>
/**
* @category instances
* @since 2.0.0
*/
export declare const tree: Monad1<URI> & Foldable1<URI> & Traversable1<URI> & Comonad1<URI>
/**
* @since 2.9.0
*/
export declare const Do: Tree<{}>
/**
* @since 2.8.0
*/
export declare const bindTo: <N extends string>(name: N) => <A>(fa: Tree<A>) => Tree<{ [K in N]: A }>
/**
* @since 2.8.0
*/
export declare const bind: <N extends string, A, B>(
name: Exclude<N, keyof A>,
f: (a: A) => Tree<B>
) => (fa: Tree<A>) => Tree<{ [K in N | keyof A]: K extends keyof A ? A[K] : B }>
/**
* @since 2.8.0
*/
export declare const apS: <A, N extends string, B>(
name: Exclude<N, keyof A>,
fb: Tree<B>
) => (fa: Tree<A>) => Tree<{ [K in N | keyof A]: K extends keyof A ? A[K] : B }>